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Fast Foveating Cameras
for

Dense Adaptive Resolution
Brevin Tilmon, Eakta Jain, Silvia Ferrari, and Sanjeev Koppal

Abstract—Traditional cameras field of view (FOV) and resolution predetermine computer vision algorithm performance. These
trade-offs decide the range and performance in computer vision algorithms. We present a novel foveating camera whose viewpoint is
dynamically modulated by a programmable micro-electromechanical (MEMS) mirror, resulting in a natively high-angular resolution
wide-FOV camera capable of densely and simultaneously imaging multiple regions of interest in a scene. We present calibrations,
novel MEMS control algorithms, a real-time prototype, and comparisons in remote eye-tracking performance against a traditional
smartphone, where high-angular resolution and wide-FOV are necessary, but traditionally unavailable.

Index Terms—computational photography, computer vision
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1 INTRODUCTION

Contemporary cameras indiscriminately sample their
environment. Human eyes, however, adaptively distribute
resolution to their direct line-of-sight at the fovea, which
contains the highest visual acuity. Resolution adaptivity
allows for efficiently expending resources only where neces-
sary: our direct line-of-sight. In this paper, we bring resolu-
tion adaptivity to cameras by way of a foveating camera,
capable of quickly, densely and simultaneously imaging
multiple regions of interest in a scene.

Our foveating camera adaptively distributes resolu-
tion by viewing reflections off a programmable micro-
electromechanical system (MEMS) mirror capable of fast
2D modulation, see Figure 1. Recent advances in MEMS
and galvonometer mirror sensors have enabled signifi-
cant progress in fast, scene-aware, adaptive depth sensing
(1; 2; 3; 4) and illumination(5; 6; 7). Inserting mirrors into
sensors optical path extends the sensors FOV to desired
directions and densities that are usually only attainable
through physically moving the sensor itself. This paper
extends our work from (8) by describing a real-time pro-
totype capable of two object tracking in Section 3, along
with extensive simulations showing the benefit of foveating
cameras at low resolutions for remote eye-tracking over a
wide-FOV smartphone in Section 4.

Contemporary sensors focus on maximizing FOV at the
expense of resolution to globally sample. This is at odds
with computer vision algorithms which depend on rich
visual data to accurately infer and reconstruct sparsely
sampled image data. We propose using foveating cameras
to quickly distribute a resolution-rich, low-FOV over a
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Fig. 1: Moving mirror creates many virtual views

wide-FOV at prohibitive distances normally unobtainable
without using large sensors or super-resolution algorithms
that may not suffice for constrained robotic platforms. To
enable accurate and simultaneous resolution distribution on
targets, we adapt an efficient robot planning algorithm for
MEMS mirror control that can optionally be integrated with
a target tracker. Our new control algorithms enable quick,
computationally light-weight updates of the MEMS mirror
to simultaneously change the camera viewpoint between
regions of interest.

We show the benefit of quickly modulating a high-
resolution low FOV over a wide FOV with a MEMS mirror
through remote eye-tracking, where both high resolution
on facial features and wide FOV are preferrable but not
possible with traditional cameras. We implement a recent
convolutional neural network for eye-tracking and, through
extensive simulations between our foveating camera and
wide FOV smartphone using data collected in our lab, show
the benefit of foveating cameras for resolution-FOV sensi-
tive domains, such as remote eye-tracking. In summary, our
contributions are:

1) A novel sensor capable of simultaneously imaging
several regions of interest in a scene by distributing
its angular resolution with a fast MEMS mirror.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, MMMM XXXX 2

We discuss optical and electronic calibrations along
with a real-time prototype.

2) An extension to the unicycle model for robot control
to change the MEMS mirror path for pairs of targets.
Our control algorithm is based on new closed form
solutions for differential updates of the camera state.

3) Demonstrating the benefit of adaptive resolution
through increased remote eye-tracking performance
compared to a conventional wide FOV smartphone
with equivalent angular resolution.

1.1 Related work
Active vision and adaptive sampling. Ideas from visual atten-
tion (9; 10), have influenced robotics and vision, and infor-
mation theoretic approaches are used to model adaptive 3D
sensing for SLAM and other applications (11; 12). Efficient
estimation algorithms have been shown for adaptive visual
and non-visual sensing on robots and point-zoom-tilt (PZT)
cameras (13; 14). We propose to use active vision to drive the
MEMS mirror directly in the camera, allowing for foveating
over regions of interest.
MEMS/Galvo mirrors for vision and graphics. MEMS mirror
modulation has been used for structured light (7), dis-
plays (15) and sensing (16). We use MEMS mirrors to modu-
late viewing direction. MEMS mirrors used in LIDARs, such
as from NASA and ARL (17; 18; 19), are run at resonance,
while we control the MEMS scan pattern for novel imaging
strategies, similar to (2). Such MEMS uses have been shown
(20) for highly reflective fiducials in both fast 3D tracking
and VR applications (21; 22). We do not use special reflective
fiducials and utilize active vision algorithms for MEMS
mirror control. (23) shows a MEMS mirror-modulated 3D
sensor with the potential for foveation, but without the
adaptive algorithms that we discuss. In contrast, the foveat-
ing camera presented here passively uses mirrors to im-
age regions of interest in real-world scenes, compared to
calibration-target oriented work (24; 25).
Selective imaging and adaptive optics. Our approach is simi-
lar in spirit to optical selective imaging with liquid crys-
tal displays (LCDs) (26) and digital micro-mirror devices
(DMDs) (16). Because we use 2D scanning MEMS mirrors,
we are able to allow the angular selectivity of (26) with
the MEMS-enabled speed of (16). Our design is the first
to use a MEMS mirror to image dynamic scenes, although
foveated designs have been proposed for static scenes, such
as (27; 28; 29). Further, while we use a small MEMS mirror
with many advantages of high-speed and low wear-and-
tear, similar approaches have been tried with motor-driven
mirrors (30).
Compressed sensing. Our approach of selectively imaging
what is related to optically filtering light-fields for imaging
tasks (31; 32) and compressive sensing (33). While there
exist CS techniques for creating foveated imagery (28; 34),
achieved sometimes during image capture, our goal is to
distill visual information inside the camera, with MEMS
mirror control, without requiring computationally intensive
post-capture processing such as L1 optimization. Finally
our approach involves fast modulation of the viewpoint,
whereas fast temporal illumination modeling has enabled
light-transport imaging (3; 35; 36; 37) and transient imag-
ing (38).

Remote gaze tracking. Previous efforts have built eye-trackers
for use at either close distances or remotely using pan-
zoom-tilt (PZT) cameras for applications such as home
entertainment (39; 40), outdoor advertising (41) and driver
monitoring (42). Depth and pose from stereo pairs has
enabled gaze tracking from longer distances (43; 44). We
are the first to use a MEMS-mirror based foveating camera
design for remote eye tracking. In our experiments, we track
gaze from two people at 3m distance, separated by about
a meter, which is currently not possible with any other
technique. Further, our technique can easily accommodate
multiple people with a single camera of high enough frame
rate, since the MEMS mirror can move at KHz rates. In
contrast, for methods that rely on PZT for dynamic scenes,
frames are lost by the motorized sensors, unless each target
is allocated a dedicated camera.
Equiangular cameras. A natural argument against foveated
imaging is to use a large field of view equiangular sensor to
image at the same high angular resolution as our foveating
camera. We note that the current high cost of camera sensor
fabrication actually encourages the use of our foveating
camera, because we can modulate an equally dense angu-
lar resolution field of view using a camera sensor that is
quadratically smaller, and therefore more inexpensive, than
an equiangular camera that has the same angular resolution.
Please see Section 1 of the supplementary and Figure 15 in
Discussion for further explanations and simulation.
Fast object tracking with galvanometer mirrors.

Unlike MEMS-modulated projectors and lidars, the mir-
ror size is not correlated with light throughput when imag-
ing with cameras like we do. Using the same camera sensor
and lens, the mirror size affects the incident aperture size
and how close the mirror must be to the camera to fill the
camera field of view. However, once the camera field of
view is filled exactly, the amount of light illuminating the
camera sensor is the same no matter the mirror size that
fills the camera field of view by similar triangles. Although
the MEMS mirror size does not affect light throughput, the
incident aperture that lets light hit the mirror plays a noise
role we plan to explore in future work. Tracking with large
galvo mirrors has been shown by (6). This system adaptively
illuminates an object moving through a FOV via optical
flow, and does not distribute illumination to other objects.

2 FOVEATING CAMERA PROTOTYPE

Our prototype in Figure 2 consists of a Mirrorcle Technolo-
gies 3.6mm bonded MEMS mirror, Mirrorcle USB MEMS
controller, FLIR BFS-U3-16S2C-CS with a 35mm f/8 Ed-
mund Optics lens, and custom synchronization circuitry for
triggering the sensors. We chose the camera parameters and
mirror size that make the camera FOV roughly the same size
as a face at from 3m to 5m.

Using thin lens equations and our camera parameters,
we can form a simulation for finding the camera-mirror
distance D that minimizes vignetting from the mirror by,

D =
M

2
sin(α) cot(

θ

2
). (1)

where θ is the cameras FOV for a given lens and sensor, M
is the MEMS mirror diameter and α is the angle between the
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mirror and camera optical axis, which is typically π/4 by the
manufacturer provided Brewster’s angle, or the angle that
polarized light completely passes through a transparent sur-
face. Note we only take into account the mirror’s coverglass
Brewster angle, since the coverglass stays constant while
the mirror moves. We used our simulation model mainly
to determine what optics enable imaging a typical human
head for eye-tracking purposes discussed in later sections.

Fig. 2: Foveating camera prototype.

Resolution calibration. Our MEMS mirror comes with a
protective coverglass that reflects light in the visible ranges
and passes in the Near Infrared Ranges (800-900nm), we
wish to only image light reflected by the mirror and not
the coverglass, therefore we aim to suppress the reflected
coverglass light. We suppress coverglass ghosting by fit-
ting a 800-900nm bandpass filter to the camera, orienting
the camera and MEMS mirror coverglass at π/4 satisfying
Brewster’s angle according to manufacturer specifications,
and inserting an absorbing cover over ghosting-inducing
reflective packaging surrounding the MEMS mirror. These
calibrations enable much higher image quality as seen in
Figure 3.

In Section 4 we examine eye-tracking performance as
a function of resolution for both our foveating camera
and iPhone 6 smartphone. Our foveating camera uses a
1/3” sensor, .003mm pixel size, and 35mm lens resulting
in a 1080x1920 resolution while the iPhone 6 uses a 1/3”
sensor, .0015mm pixel size and a 4.15mm lens resulting in
a 3024x2268 resolution. In Section 4 we simulate various
optics and show associated performance for both cameras.
We opt for a 35mm lens because this enables us to tightly
image faces at around three meters given our camera sensor.

Fig. 3: The coverglass induces ghosting and double images.
With a combination of using Brewster’s angle, NIR notch
filter and absorbing film, we eliminate the ghosting.

3 CONTROLLING THE MEMS MIRROR MOTION

Given an optically calibrated foveating camera, as described
by the previous section, we wish to move the MEMS mirror
to best capture the scene. As in Fig. 2, our camera captures

reflections off the MEMS mirror, whose azimuth and ele-
vation are given by changes in control voltages over time,
(θ(V (t)), φ(V (t)) over the mirror FOV ωmirror.

3.1 Problem Setup
Let the system bandwidth be M pixels/second. Given an
integer k > 0, we use a camera that captures M

k pixel im-
ages at k images/second, in the foveating sensor. Since the
mirror moves quickly, new active vision control is possible
to distribute the k instances of the viewing cone within a
second.

Consider a virtual plane Π perpendicular to the optical
axis and parallel to the MEMS mirror in a resting, horizontal
state, i.e. (θ = 0, φ = 0). Π is a fixed distance from the
MEMS mirror and is placed at the working distance of the
camera where the subjects being imaged are. Every angular
pose of the MEMS mirror (θ, φ) corresponds to a location
(x, y) on Π given by perspective scaling. For the purpose
of this paper, we focus on targets that are the faces of two
people. Long range eye tracking is possible if the mirror
moves quickly between the two face locations. We later
discuss how to adapt this two target model to multiple
targets.

Our goal is to move the mirror across a 1D line segment
of length Lr that maximizes the chances of overlapping
with the targets. Let one of the end points be denoted by
(xr, yr), while its orientation is given by the angle αr w.r.t an
arbitrary reference vector, such as one parallel to the lower
edge of the MEMS mirror.

We denote the state of the sensor by the triplet qr =
(xr, yr, αr), and this state exists in a space of possible
configurations given by the sensor hardware limits for 1D
motion, U = (Lmin, Lmax) × (ωmin, ωmax). U relates to
(xr, yr, αr) because (xr, yr, αr), lying in plane Π, are con-
strained by U. We encourage the reader to see Figure 1 in
the supplementary material for a visual aid. The problem of
control requires a solution that changes the state qr of the sensor
to enable target imaging.

Lmin and Lmax correspond to the min and max distance
between regions of interest in Π with Lmin = 0 and Lmax <
2ωmax . ωmin = 0o and ωmax is given by

ωmax = tan(ωmems) + FOVfovea (2)

where ωmems corresponds to the MEMS mirror maxi-
mum tilt and FOVfovea corresponds to the field of view for
the camera imaging the MEMS mirror.

There are two ways to control the MEMS mirror to move
in a 1D motion. The first is point-to-point and the second is
using resonance, creating a Lissajous pattern.

Point-to-Point algorithm. Given prior knowledge of the
objects location in the scene, which can be given by a co-
located sensor or known initialization, it is then possible
to image each object through updating the respective dic-
tionary mirror coordinates to keep the moving objects in
frame.

Using the point-to-point control strategy, our foveating
camera begins by initializing camera parameters and send-
ing initial [x, y] coordinates to the MEMS controller. These
coordinates indicate where the optical axis of the mirror
points to on the arbitrary plane Π. The camera capture is
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triggered for every sample streamed to the mirror from
the controller, and this trigger signal is delayed by 200µs
to allow the MEMS mirror to settle for clean images. The
image is then processed, which explains the delay between
mirror movement and camera exposure in Figure 4, and the
voltages sent to the MEMS mirror are scaled to satisfy a
given criteria, such as keeping an object in frame at the
given coordinate for that object. We add an additional delay
before the mirror moves again for processing to finish. This
strategy results in a total frame rate of 40Hz with the camera
imaging 640x480 at 8-bit RGB. We use 640x480 resolution
since real time imaging is infeasible at the native 1920x1080.
See Figure 4 for a visualization of our cameras timing.

Fig. 4: Timing description of our foveating camera. tmirror
is the mirror settling time used to delay the camera trigger
signal, texposure is the camera exposure time and tsystem
is the total time of one frame capture after all motion and
processing delays.

Real-time demonstration.We now show a real-time demon-
stration of our foveating camera using the point-to-point
control algorithm for tracking two red balls at 20Hz for
each ball in Figures 5 and 6. The ghosting artifacts can
be suppressed by inserting an absorbing filter around the
MEMS mirror as mentioned in Section 2

Fig. 5: Helper smartphone image.

Fig. 6: Raw output of our foveating camera switching be-
tween two red objects based on point-to-point algorithm.

Lissajous pattern. Our main control contribution is pro-
viding closed form differential updates to MEMS mirror 1D
lissajous scanning motion. However, we only use lissajous

scanning for the proof of concept control experiment in
Section 5, and use point-to-point for the real time demon-
stration and data collection for eye tracking. The benefit of
lissajous scanning over point-to-point is lower latency due
to softer control on mirror coordinates. 1D lissajous scan
patterns are realized by,

y(t) = Asin(2πfxt+ φx) (3)

Now consider a 1D lissajous wave of amplitude Lr
2 ,

bounded by the face locations. W.l.o.g consider one of these
locations to be the “anchor” of the system, (xr, yr), while
its orientation is given by the angle αr w.r.t an arbitrary
reference vector, such as one parallel to the lower edge of
the MEMS mirror.

Unlike the previous point-to-point method, the Lissajous
pattern runs in resonance, which has both advantages and
disadvantages. Speed and the lack of any settling time, as
in Figure 4 are an obvious advantage. However, since the
MEMS mirror is in a balistic mode, images are obtained
in the gaps between the target that must automatically be
removed. Finally, the end points of the mirror motion may
not be consistent, and therefore alignment must take place.

In the next section, we detail how to update qr , the state
of the mirror, which is general and impacts any technique
for 1D mirror control for two targets.

3.2 Control Algorithm Overview
To change the state to match the people’s motion around
the scene, we define a control vector ur = (vr, ωr) for a
new desired motion, by specifying the velocity vr by which
the length of the 1D motion should change and the angular
velocity ωr by which the angle of the 1D motion should
change. In the supplementary material, summarized briefly
in Sect. 3.3, we use an optional Kalman filter to estimate
the current state of the MEMS mirror’s 1D motion and the
face locations, given a previous state and face locations and
the desired control vector. Proability distributions can be ob-
tained from a co-located sensor instead of the Kalman filter.
Our contribution mainly lies in the subsequent sections Sect.
3.4 and Sect. 3.6, where we discuss how to come up with a
control vector, given previously captured imagery from our
sensor. Our model and control algorithm are adapted from
the unicycle model of robot control (45).

3.3 Optional Kalman filter for state and target tracking
A probability distribution of the targets over time is neces-
sary to control the viewing direction of the MEMS mirror
in our camera. For experiments in Sect. 4 we have used
a vision-based face-tracker as a proxy for this filter. For
completeness we have provided the description of a Kalman
filter tracker in the supplementary material. That supple-
mentary material defines a control matrix Br(k) to update
the state vector using the control vector ur(k):

qr(k + 1) = I3qr(k) +Br(k)ur(k) +Qr, (4)

where Qr is the covariance matrices of the MEMS controller
noise and I3 is the identity representing the state transition
for a calibrated, controlled sensor (i.e. only our control
vector and noise matters in changing the state).
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Let the left and right face locations, on plane Π, be qf =
[xlf ylf xrf yrf ]. Adding the face locations to the sensor
state gives a full state vector, q(k) = [qTr (k) qTf (k)]T . Since
we have no control over the location of the faces, the full
control vector u(k) = [ur(k) 0]T . The full prediction is

q(k + 1) = F q(k) +B(k) u(k) + w, (5)

where F is a target motion matrix, based on optical flow
equations, derived in the supplementary material and w
represents the process noise in the MEMS controller and
the target motion and is denoted as covariance matrices Qr
and Qt. Let the covariance matrix of the state vector (MEMS
mirror + target faces) be Pk = [Pr(k) 0; 0 Pt(k)], where
Pr(k) is the covariance matrix representing the uncertainty
in the MEMS mirror state and Pt(k) is the covariance matrix
representing the uncertainty in the target location. Then the
change in uncertainty is

P (k + 1) = [Br(k)TPrBr(k) 0; 0 Pt] + [Qr(k) 0; 0 Qt(k)],
(6)

where the untracked noise is represented in the MEMS
controller and the target as covariances Qr and Qt.

The update step for the entire system is given by two
types of sensor measurements. The first is the proprio-
ceptive sensor based on the voltage measurements made
directly with a USB oscilloscope that receives the same
voltages sent to the MEMS. The second is a camera that
views the reflections of the mirror and applies a standard
face recognition classifier to each location, determining a
probability distribution of left and right face locations across
the FOV. From these two measurements we can propose
both the estimated state vector and its covariance matrix,
[z(k), R(k)]. Note that the measurement function (usually
denoted as H(k)) is the identity in our setup since all the
probability distributions share the same domain, i.e. the
2D plane Π created in front of the sensor. The remaining
Kalman filter equations are

K
′

= P (k + 1)(P (k + 1) +R(k + 1))−1. (7)

q
′
(k + 1) = q(k + 1) +K

′
(z(k + 1)− q(k + 1)). (8)

P
′
(k + 1) = P (k + 1)−K

′
P (k + 1). (9)

3.4 A metric for good mirror control

We define a metric for control as the difference between the
groundtruth (unknown) state q(k) and the current state as
predicted by the filter q

′
(k + 1). This is useful to quantify

the tracking performance of our system. However, if there
is no face detection, then the filter cannot be applied and we
default to the previous state moved by the control vector,
given by q(k + 1). The filter cannot be applied because the
face detections are necessary to fully define our state space
q(k). Let Pd be the probability that all faces were detected
successfully.

Mk = PdE[e
′
(k+1)T e

′
(k+1)]+(1−Pd)E[e(k+1)T e(k+1)].

(10)
where

e
′
(k + 1) = q(k)− q

′
(k + 1). (11)

e(k + 1) = q(k)− q(k + 1). (12)
(13)

Using the trace trick, similar to (45), we can convert Mk into
an expression using the covariance matrices,

Mk = tr[P (k+ 1)]−Pd(tr[P (k+ 1)]− tr[P
′
(k+ 1)]). (14)

Since tr[P (k + 1)] − tr[P ′(k + 1)] is always positive (due
to uncertainty reduction of a Kalman filter), maximizing Pd
reduces the error Mk. This is our metric for good performance,
which should illuminate how to control the MEMS mirror
with the control vector ur .

3.5 Updating the control vector
The conclusion of the previous section’s discussion can be
depicted as a control law,

maxurPd (15)

where Pd is defined as the probability that all the faces
are detected, and is given by integrating the probability of
seeing a face over the MEMS mirror path given by the state
of the sensor, qr(k) = (xr(k), yr(k), αr(k)). We now discuss
a gradient-based iterative update to the control vector, given
the sensor state and uncertainty.

.
Calculating Pd as a slice Given a parameter s, we can
express the locations along which the probability Pd must
be integrated as,

Pd(qr(k)) =

∫ L

s=0
ft(xr(k)+s cosαr(k), yr(k)+s sinαr(k))ds

(16)
where ft is the probability distribution function of the faces
in the canonical plane Π. The distribution ft comes from the
estimates of face location, which could be from the Kalman
filter or from another process, and can be modeled as a pair
of bi-variate Gaussian distributions, of equal weight (i.e. the
mixing parameter is 0.5), such that ft(x, y) = fl(x, y) +
fr(x, y), where each Gaussian component centered at the
two previously estimated left and right face locations given
by qf (k− 1) = [xlf (k− 1) ylf (k− 1) xrf (k− 1) yrf (k− 1)].

In other words, Pd is an integral along a slice through
two bivariate Gaussian distributions. For each left and right
case, we know the correlation matrix of both 2D gaus-
sians, from the Kalman filter, given by [σ1l, σ2l, ρl] for
the left and [σ1r, σ2r, ρr]. Therefore the term ft(xr(k) +
s cosαr(k), yr(k) + s sinαr(k)) can be split into two com-
ponents, where x = xr(k) + s cosαr(k) and y = yr(k) +
s sinαr(k), the first given by fl(x, y)

1

2πσ1lσ2l

√
1− ρ2l

e
−

(x−xlf )2

σ2
1l

−
2ρl(x−xlf )(y−ylf )

σ1lσ2l
+

(y−ylf )2

σ2
2l

2(1−ρ2
l
) (17)

and the second given by fr(x, y)
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Algorithm 1: Gradient-based update of control vec-
tor ur

Input: Kalman filter outputs, valid space U, epsilon
error threshold ε, learning rate η and initial
control vector ur

Output: Updated control vector ur
1 while 1 do
2 utmpr = ur + η δPd(qr(k+1))

δur

3 if utmpr 6∈ U
4 return
5 else if ‖utmpr − ur‖ < ε
6 return
7 else
8 ur = utmpr

9 endif
10 end
11 return ur

1

2πσ1rσ2r
√

1− ρ2r
e
−

(x−xrf )2

σ21r

−
2ρl(x−xrf )(y−yrf )

σ1rσ2r
+

(y−yrf )2

σ22r
2(1−ρ2r) .

(18)

3.6 Arguments for using gradient descent
In this section we argue that maximizing the value Pd, can
be tackled with gradient descent. First we show that Pd has
at most two global maxima, by linking it to the well known
Radon transform. Second we show that this formulation of
Pd is bounded.
Global maxima: Pd is obtained by slicing through the two
Gaussians at a line segment given by qr = (xr, yr, αr). By
reconstituting this as a slice through a line with y intercept
yrad = yr + xr ∗ (tan(αr)) and slope srad = tan(αr),
we notice that Pd is the Radon transform of a bi-variate
distribution. For each Gaussian distribution individually,
this transform has been shown to be unimodal with a
global maxima and continuous (46) for a zero-mean Gaus-
sian. Since translations and affine transformations do not
affect the radon transform, these hold for any Gaussian
distribution. For the sum of radon transforms of two such
Gaussians, there can be at most two global maxima (if
these are equal) and at least one maxima (if these overlap
perfectly). Finally, the Radon transform is computationally
burdensome for a robot to compute at every frame, which
supports using iterative gradient descent.
Bounded domain: Consider any slice through the bi-variate
distribution. Consider a slice that has the centers of the two
Gaussians on the same side of the slice as in 8I(c). Then, by
moving the slice towards the two centers, we can increase
both components of Pd exponentially and monotonically. So
such a slice cannot maximize Pd. From the above argument,
the slice that maximizes Pd goes through a line segment
between the centers of the two Gaussians as in 8II(c). In
other words, the domain, within the Radan transform of bi-
variate Gaussians, where we must search for the maximal
slice, is bounded.
Optimal path is not the line joining Gaussians’ center: While the
line joining the Gaussians’ center is a useful heuristic, it is

Fig. 7: Heterogeneity

not a general solution since the length of the integral L could
be smaller than the distance between the Gaussian centers.
Secondly, the heuristic tends to work when the Gaussians
are similar; if one Gaussian dominates, as in Fig. 7, then the
optimal line can be different.

From these arguments of bounded domain and conti-
nuity, the application of gradient descent is a reasonable
strategy for lightweight optimization of the control law.

3.7 Gradient descent

Gradients and algorithm We compute the Jacobian (i.e. deriva-
tives) of Pd(qr(k + 1)), given by ur

δPd(qr(k + 1))

δur
=
δPd(qr(k + 1))

δqr(k + 1)

δqr(k + 1)

δur
(19)

Since the second term is the sensor motion model
Br(k)δt, we just need to calculate the first term,

δPd(qr(k + 1))

δqr(k + 1)
=


δ
δxr

Pd(qr(k + 1))
δ
δyr

Pd(qr(k + 1))
δ
δαr

Pd(qr(k + 1))

 (20)

We can rewrite this by setting x = xr(k) + s cosαr(k) and
y = yr(k)+s sinαr(k), and by splitting ft into left and right
Gaussians, as

δPd(qr(k + 1))

δqr(k + 1)
=


δ
δxr

∫L
s=0 fl(x, y)ds

δ
δyr

∫L
s=0 fl(x, y)ds

δ
δαr

∫L
s=0 fl(x, y)ds

 +


δ
δxr

∫L
s=0 fr(x, y)ds

δ
δyr

∫L
s=0 fr(x, y)ds

δ
δαr

∫L
s=0 fr(x, y)ds

 (21)

These gradients can easily be calculated after every it-
eration of the Kalman filter, allowing for the closed form
update of the MEMS mirror based on the movement of
the faces, sensor state and uncertainty. In our experiments,
we computed closed forms of these using a commercially
available symbolic calculator, and the accompanying files
representing the derivatives are provided in the supple-
mentary material. In Algorithm 1 we use these gradients
to update the control vector.
Simulations: In Fig 8 we show simulations of Algorithm 1
on 20 pairs of 2D Gaussians. In Fig 8I(a) we select four from
these 20, showing the ground-truth “slice” that maximizes
target probability, Pd , calculated from the radon transform.
In Fig. 8I(b) we show the results of the experiments. For
each Gaussian pair, we began the gradient descent at an
initialization from the ground-truth, using a shift of mean
zero and standard deviation σ such that 3 ∗ σ varies from
0 to about a 25% of the image width. This means that at
the extreme case, initialization could be anywhere in a 50%
chunk of the image near the ground-truth. Fig. 8II shows
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Fig. 8: Simulations of 1D slice optimization: In (I) and (II) we created simulations to test the iterative optimization in
Algorithm 1. (I) is a free-form optimization, whereas (II) constrains the optimization along the proposed bounded region.
Note that the percent error for (II) is slightly lower.

Fig. 9: Our eye tracking setup and gaze pattern used for our finetuning dataset.

similar experiments where we only allowed initializations
in the constrainted domain of the segment between the
maxima of the Gaussians. This reduces the overall error
percentage slightly in Fig. 8II(b).

Fig. 8I-II(b) graphs show Euclidean distance between the
converged slice and ground truth, averaged over five trials.
Note that most results converge even for large deviations
from the ground-truth. In Fig. 8I-II(c) we show the conver-
gence path for these examples, and in Fig. 8I-II(d) we show
that the L2 norm of the gradients decreases as it converges.

Practical considerations: While we have provided gradients
for optimization, other factors influence convergence such
as the learning rate. Failure cases of our setup are due to
initializations that are too distant from either Gaussian and,
therefore, have small gradients (i.e. local minima). Again,
more capable optimization strategies, using our gradients,

can result in better convergence.

4 REMOTE EYE-TRACKING FOR FRONTAL FACES

We demonstrate the benefit of modulating a dense low-FOV
over a wide-FOV through remote eye-tracking, where both
high angular resolution and wide FOV for multi-person
imaging are necessary. Remote eye-tracking for frontal faces
has potential applications in situations where the faces are
directly viewed by the camera, such as human-robot inter-
action, automobile safety, smart homes and in educational,
classroom settings.

In this section, we describe our testbed for remote eye-
tracking, where we compare the eye tracking performance
using the iTracker convolutional neural network (47) for
both our foveating camera and a near-co-located smart-
phone. We also present a proof-of-concept remote eye-
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Fig. 10: Sample images from our dataset. Our foveating
camera data is on the left and iPhone 6 smartphone is on
the right. Some faces are off center due to this being a real
experiment with the camera moving.

Camera L2 Error (10 epochs) (cm)
Smartphone (random initial.) 55.91
Smartphone (iTracker initial.) 6.5

Foveating camera (random initial.) 45.77
Foveating camera (iTracker initial.) 4.45

TABLE 1: Random initialization fails (Train/Val error)

tracking system that uses our MEMS mirror enabled foveat-
ing camera to capture images.

4.1 Our eye-tracking setup

Our setup, shown in Fig. 9, consists of our foveating camera,
placed between two NIR floodlights. The setup is at the top
of a textureless lambertian plane of width approximately
100cm × 100cm. A video projector, placed at 2m distance,
projects a 5x5 grid of points spanning the width and height
of the lambertian plane, as in the figure.

Two subjects at 3m distance from the camera, view the
patterns, focusing on each dot for about 5 seconds. The
smartphone camera has a FOV of 55◦ and views both
subjects. Our camera has a FOV of 8.6◦ and alternates
between the two subjects. In Sect. 5, we describe how to
control the movement of the mirror due to subject motion,
but in this section we will assume that only the eyes of
the subjects move. Therefore in all our experiments, for the
same pixel bandwidth of 1920 × 1080 for our sensor and the
smartphone, we are able to increase the angular resolution by
a factor of 55

8.6 ≈ 6 times. This is the main advantage of
the foveating camera. Now we discuss the impact of this
increased resolution on eye-tracking performance.

4.2 Fine-tuning a gaze-tracking network

The iTracker convolutional neural network (47) takes in four
inputs derived from a single capture of a face (both eyes,
cropped face and face location), assumed to be captured on
a smartphone, at arms length from the face. Each of these
inputs goes into a dedicated Alexnet-inspired network, with
the eye-layers sharing weights. The outputs of the layers are
a 2D gaze location, relative to the camera; e.g., the output is
(0, 0) for someone looking directly at the camera.

86% of the iTracker imagery is iPhone data trained on
eye angles varying in y from 2cm (4.5o) to 10cm (21.8o) and
x from -1cm (2.3o) to 5cm (13.5o). To maintain these angles
at 3m for our data, we trained on patterns spanning x from
-39cm to 39cm (7.4o) and y from -21cm (4o) to -82cm (15.3o).

While this network has been trained on the GazeCapture
dataset of around 1400 subjects in a variety of domains, it
cannot be used directly on our setup (described next), since
the geometry of the setup is different (i.e. subjects are much
further away, 25cm in iTracker vs. 3m for us) which changes
the perspective of how much the eyes appear to move for
the same angle. Further, our data is in the NIR range, which
is different domain than the data used in the paper. In all
our results, we compare the original results with fine tuning
with domain-specific data collected with our setup. All our
training and testing was done at 3m from the camera.

4.3 Data collection for fine-tuning

The network performs poorly using the provided network
weights at the same span of test points at 3m as the iPhone
tests. This is expected since viewing a 12cm spanned x,y
pattern (iPhone) at 3m gives less than 1o eye angle. Com-
mercial eye trackers typically employ 1o eye angle tolerance
or higher. To circumvent lack of eye angle, we fine tuned the
network on data with the correct in-situ angular properties.

Experiments with four volunteers (3 male and 1 female,
see Fig. 10(I)) enabled the collection of fine-tuning data in-
situ with the device, in NIR, for the grid pattern in Fig. 9
along with the smartphone. Each data collection experiment
lasted 20 minutes, and data was collected simultaneously for
smartphone and foveating camera. We record 400 images
per point, giving 10,000 images per subject or 40,000 total
images. We use 33,000 images due to faulty face and eye de-
tections being discarded to maintain high-fidelity data. We
randomly split the dataset into 23,000 train, 4,000 validation,
and 6,000 test for our foveating camera and smartphone. For
fine-tuning, we begin with identical weights to (47), except
we lower our learning rate ten fold. We do not freeze any
layers. We found 10 epoch fine-tuning to fit our dataset
properly, and all results in this section are from 10 epoch
fine-tuning.

4.4 Experimental results

In our experiments, the subjects were at 3m distance and
six people were involved overall, four for training and
testing, two for the proof of concept experiment in Section
5. To show that this relatively small fine-tuning dataset does
not adversely affect our results, we show, in Table 1, that
validation errors after 10 epochs for both our camera and the
smartphone are much higher when starting from random
weights, than from the pre-trained weights. So, our small
dataset is simply used for fine-tuning and does not overfit
after 10 epochs, and we do indeed utilize the 1400 users
encapsulated in the pre-trained weights.

Simulating angular resolution. We now show the benefit
of our foveating camera by analyzing eye tracking error as
a function of simulated angular resolutions for our foveat-
ing camera and smartphone. We introduce a simulation
model to downsample and then upsample network inputs,
changing the angular resolution of the inputs. We finetune,
validate, and test the network all using simulated network
inputs according to the below simulation model. The test
data is reshuffled for each simulation while the network
hyper-parameters remain identical to section 4.2.
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(a) Simulated small sensor (larger pixel
size) and lenses error vs angular resolu-
tion.

(b) Baseline sensor and simulated lenses
error vs angular resolution.

(c) Simulated larger sensor (smaller pixel
size) and lenses error vs angular resolu-
tion

Fig. 11: Angular resolution experiment results.

Simulation Model. We outline the equations and pro-
vide code for our simulation model in Section 2 of the
supplementary but give the main idea here. We pick dif-
ferent camera parameters for both our foveating camera
and smartphone. We then downsample and upsample the
network inputs based on how many pixels from each new
simulated camera are left over in the original field of view
to simulate angular resolution loss.

Simulation Results. Our simulations show that we can
maintain low eye-tracking error even at very small image
resolutions. Figures 11a, 11b, 11c demonstrate the eye track-
ing performance drastically degrading for the smartphone
as angular resolution decreases while our foveating camera
error degrades more gradually and has a much lower ex-
treme. Our foveating camera and smartphone converged to
similar errors at high angular resolutions with the smart-
phone performing slightly better at image sizes above 2MP.
Even though the simulated angular resolution of our foveat-
ing camera and smartphone are equivalent on Figures 11a-
11c x axis, downsampling and upsampling causes different
degradation’s for our foveating camera and smartphone
since their images were sampled at different native angular
resolutions. We do not see the smartphone outperform the
foveating camera until we use a smaller pixel size (larger
number of pixels) in Figure 11c. The smartphone is able
to beat the foveating camera because the foveating camera
is degraded just enough after our resizing operation in
comparison to the smartphone to make the resulting true
angular resolution worse than the smartphone true angular
resolution after our resizing operation.

See Figures 12 and 13 for a visualization of the iTracker
network output for our foveating camera and smartphone,
respectively. The L2 error of our foveating camera was
5.18cm and the smartphone was 11.06cm. The camera pa-
rameters for this visualization include increasing sensor
pixel sizes by 1.5, using 5mm and 2.5mm lenses for our
foveating camera and smartphone, respectively, giving a
common vertical angular resolution of .4 pixels/mm be-
tween the smartphone and foveating camera, as in in Figure
11a. Since our native FOV was 466mm x 262mm (W x H),
the image size at these parameters was 332 x 104, this clearly
shows the benefit of our camera: we are able to sacrifice
significant resolution and maintain high performance.

Fig. 12: Raw network output for our foveating camera test
data with 5.15cm error. The ground truth locations are black
dots.

Fig. 13: Raw network output for smartphone test data with
11.06cm error. Ground truth locations are black dots.

5 PROOF-OF-CONCEPT CONTROL EXPERIMENT

Finally, we use the control from Section 3, along with the
eye-tracking capability described in the previous section,
to demonstrate a proof-of-concept capability of our sensor.
In this experiment, one of the pair of persons from our
test subjects not used in training, validating, or testing the
network are looking at a square pattern the network has not
seen. This pattern has a smaller span than the 5 x 5 grid used
in Section 4.

We use a the bounding box from a simple face-
tracker (48) as a proxy for the Kalman filter, and use the
a user defined ratio k ≈ 3 to map the maximum box
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dimension dmax to the variance σ = k ∗ dmax in a sym-
metric Gaussian centered on the box that approximates the
probability distribution of the face. Combining this for both
faces provides the probability distribution of the targets Pd,
required in our control law.

Fig. 14: Proof-of-concept control experiments where one
subject moves slightly, and Algorithm 1 is used to reset the
mirror positions. Eye tracks are provided for start state and
the end state, after mirror motion.

In Fig. 14, we show the initial state of the scene for the
two test subjects and the corresponding gaze track for the
square at the initial mirror position of [-1 0] for the left
person and [1 0] for the person on the right and the control
state is qr = [−1 0 0]. Then, one person moves, as shown
in the figure. Algorithm 1 converges to mirror positions of
[-.86 0.331] and [.915 -0.05] respectively with a state vector of
qr = [.915 −0.05 π

24 ]. Note that, at these new positions, both
faces are clearly visible, and the gaze tracking experiment
for the square pattern, redone at this new mirror position,
also produces good quality results (6.8cm and 6.03cm L2
error respectively).

6 CONCLUSION

Limitations. Multi-object tracking with 2D lissajous scanning
is an area of focus moving forward, and we hope to provide
derivations for these mirror position updates in future work
to move towards a generalized control law.

Integrating an auto-focusing element such as a liquid
lens into our camera would improve the shallow depth of
field of our camera caused by the MEMS mirror size. Liquid
lenses are easily embedded into camera systems and would
allow for increased imaging distance and depth of field.

While our camera is fairly compact at 15cm x 10cm x
10cm, we acknowledge this size will need to be reduced
before foveating cameras could easily be integrated into
robotic imaging systems. This could be accomplished by
replacing the bulky MEMS controller with a MEMS driver
board giving dimensions of 3.5cm x 4cm x 1cm, and using

Fig. 15: As angular resolution increases, foveating cameras
can obtain the same angular resolution with quadratically
less pixels than their potentially gigapixel camera counter-
part.

optics and sensor housing that optimize for smallest pos-
sible form factor. We also note that using a MEMS driver
board instead of MEMS controller should increase the frame
rate of the camera due to less software overhead from the
ease of use the controller provides.

Discussion. Further comparison with competing sensors
and datasets is necessary to further show our camera’s
performance. We provide initial simulations comparing our
foveating image capture technique to an equivalent full
frame camera in Figure 15 and in the supplementary.

Foveating cameras change a cameras viewpoint such
that it can see multiple regions of interest at resolutions
and speeds typically not possible. Quickly modulating a
pixel-dense camera viewpoint has direct applications to
robotics, augmented reality and autonomous vehicles where
densely sampling specific regions could help complete 3D
reconstructions, aid long range visual navigation tracking,
and increase safety by increased sampling on critical regions
of interest.
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