
1

Fast Foveating Cameras
for

Dense Adaptive Resolution
Supplementary Material

Brevin Tilmon, Eakta Jain, Silvia Ferrari, and Sanjeev Koppal

Abstract—Traditional cameras field of view (FOV) and resolution predetermine computer vision algorithm performance. These
trade-offs decide the range and performance in computer vision algorithms. We present a novel foveating camera whose viewpoint is
dynamically modulated by a programmable micro-electromechanical (MEMS) mirror, resulting in a natively high-angular resolution
wide-FOV camera capable of densely and simultaneously imaging multiple regions of interest in a scene. We present calibrations,
novel MEMS control algorithms, a real-time prototype, and comparisons in remote eye-tracking performance against a traditional
smartphone, where high-angular resolution and wide-FOV are necessary, but traditionally unavailable.

F

1 FOVEATING VS EQUIANGULAR CAMERAS

There are equiangular, or full frame, cameras on the market
today with resolutions exceeding 60MP, such as the Sony
A79 IV. Then, why should we care about carefully placing
pixels when pixels are abundant? The two key benefits of
our camera against a larger sensor include 1. The native
angular resolution increase from imaging a MEMS mirror
with a telephoto lens. and 2. Being able to modulate this
higher angular resolution field of view to the same field of
view as a full frame camera, which is possible using a high
speed MEMS mirror. These two key benefits allow us to use a
much smaller and therefore cheaper camera sensor compared to
an equivalent full frame sensor with equal angular resolution.
In this section we present a simulation demonstrating how
the number of required pixels for foveating cameras is
quadratically less than a camera with the same angular
resolution and FOV after MEMS movement.

Consider two cameras: one is our foveating camera
imaging a MEMS mirror that has angular resolution α and a
total FOV ω accounting for the maximum tilt of the MEMS
mirror, and the other full frame camera has the same FOV =
ω and angular resolution α. ω is calculated by

ω = 2tan(6o) + FOVfovea (1)

where the MEMS mirror can tilt from ±6o, and
FOVfovea is the field of view of the camera imaging the
MEMS mirror (see the foveated image in Figure 1). For
reference, ω is the same size as the full frame image in Figure
1.

In Figure 1, a single foveated image has the same angular
resolution as the full frame image, this is only possible when
the full frame camera sensor has more physical pixels on
the sensor than the foveating camera sensor. Our key idea
is that not all regions of images are important, and we can
dynamically multiplex resolution to salient regions with our
foveating camera.

Fig. 1: Example showing multiple foveated images and
a full frame camera image in virtual plane Π parallel to
the MEMS mirror. A single foveated image has the same
angular resolution as the full frame image. In order for the
full frame camera to have the same angular resolution as the
foveated camera, it must have more physical pixels on the
sensor than the foveated camera.

To this end, we provide a simulation of the two camera
scenario previously mentioned to demonstrate the amount
of pixels needed by a full frame camera to have equal
angular resolution to our foveating camera in Figure 2. We
choose the popular Sony A79 IV for the foveating camera
in our simulation. The Sony A79 IV has a 35mm full frame
sensor with 3.76 µm pixel size, giving 60MP resolution. We
use a 50mm lens as this would enable imaging the MEMS
mirror at roughly 10mm from the lens. We then find the
full frame resolution that gives the same angular resolution
but at the maximum possible MEMS FOV determined by

2

Fig. 2: As angular resolution increases, foveating cameras
can obtain the same angular resolution with quadratically
less pixels than their potentially gigapixel camera counter-
part.

ω. Then, we shrink the physical pixel size of both cameras
to simulate increased angular resolution. For context, at
the baseline comparison of the foveating camera having
60MP, an equiangular or full frame camera would need
112MP. The 60MP Sony camera we began simulations with
costs roughly $3,000 alongside the $1,000 MEMS mirror and
driving electronics. An example 100MP camera, Fujifilm
GFX100, costs $9,000. Clearly, at near gigapixel resolutions,
foveating camera designs are even more pertinent due to
currently high fabrication costs of large camera sensors.

2 RESOLUTION SIMULATION MODEL

We want to vary the angular resolution of the inputs for
both our foveating camera and smartphone to see which
camera parameters cause the smartphone to outperform our
natively higher angular resolution foveating camera. For our
experiments, we scale the native pixel size and lens. We
scale the pixel sizes by 0.5, 1, 1.5 and vary the foveating
lens size from 2mm to 20mm. These lens sizes ensure we
do not upsample above the ground truth resolution for
the sensor scales since the native foveating camera lens is
35mm. Note the smartphone has smaller pixels than the
foveating camera, so this gives it a denser resolution than
if it had the same sized pixel as the foveating camera. We
note that field of view simply measures the region sampled
by the camera. The field of view can be measured in meters,
degrees, radians, etc. For angular resolution, we measure
the density of pixels within the sample region, typically in
pixels/mm or pixels/degree.

Once the pixel size and lens are known, we simulate
a new foveating camera given the original intrinsic pa-
rameters for our foveating camera. We then calculate the
ratio r of pixels remaining in the original single fovea
field of view, where r < 1. We also find the ratio for the
smartphone sampling that makes the angular resolution
equal to foveating camera using the smartphone intrinsic
parameters. Using these ratios, we downsample the network
inputs with area interpolation and then upsample back to
the original resolution with bicubic interpolation to simulate
a loss in angular resolution. In essence, we shrink and grow

the network inputs based on how their simulated version
fits in the native-constant single fovea field of view for
that respective camera. We give a code example of our
simulation model in Listing 1.

1

2 import math as m
3 import cv2
4

5 def simulation_model(img, lens, s_scale, camera):
6 # all units in mm
7 fovcam_px_size = .003 * s_scale
8 iphone_px_size = 0.0015 * s_scale
9 sensor = 3.28 # sensor crop both cameras

10 cam_distance = 2800
11 original_fov_mm = 262 # single fovea native FOV
12

13 # 1. find new foveacam fov for new pixel size
14 fov_mm = cam_distance * sensor / lens
15

16 # 2. find new foveacam angular resolution(px/mm)
17 sensor_px = sensor / fovcam_px_size
18 angular_res = (sensor_px / fov_mm)
19

20 # 3. find how much of new image fits in old fov
21 new_px = original_fov_mm * angular_res
22

23 # 4. determine how to scale original image
24 if camera == ’foveacam’:
25 native_y = 1080
26 native_x = 1920
27 aspect = 1.78
28 if camera == ’iphone’:
29 native_y = 2268
30 native_x = 3024
31 aspect = 1.33
32 ratio_y = new_px / native_y
33 ratio_x = new_px * aspect / native_x
34

35 # 5. resize to lower angular resolution
36 down = cv2.resize(img, (int(img.shape[1] *

ratio_x), int(img.shape[0] * ratio_y)))
37

38 up = cv2.resize(img, (img.shape[1], img.shape
[0]))

39 return up

Listing 1: Example simulation model to change angular
resolution of dataset by scaling sensor pixel sizes and using
different lenses.

3 OPTIONAL KALMAN FILTER FOR STATE AND
TARGET TRACKING

A probability distribution of the targets over time is neces-
sary to control the viewing direction of the MEMS mirror
in our camera. For experiments in application section of the
paper, we have used a vision-based face-tracker to estimate
this distribution.

We first define a control matrix that takes the desired
control vector and estimates the shift that it induces in the
current state of the sensor. If we set the index for time as
k, and if we denote an instantaneous time at δt, then the
control matrix Br(k) for the sensor state is:

Br(k) =

 cosαr(k)δt 0
sinαr(k)δt 0

0 δt

ur (2)

where infinitesimal shifts in time result in changes in the
length and angle of the MEMS mirror’s 1D motion. Before

3

we write the full predict step for the filter, consider the
prediction for just the MEMS mirror state, which depends
on the control vector ur(k):

qr(k + 1) = I3qr(k) +Br(k)ur(k) +Qr, (3)

where Qr is the covariance matrices of the MEMS controller
noise and I3 is the identity representing the state transition
for a calibrated, controlled sensor (i.e. only our control
vector and noise matters in changing the state).

To write the full predict step, we also add estimates of
the targets. Since we are tracking two people, their 3D face
locations (i.e. center of face) project onto the virtual plane Π
at two 2D locations, given by qf = [xlf ylf xrf yrf] for the
left face and right face.

We denote the full state vector as containing all the
MEMS mirror information plus the face locations as q(k) =
[qTr (k) qTf (k)]T . Since we have no control over the location
of the faces, the full control vector u(k) = [ur(k)0]T .

For the target faces, the state transition vector is given
calculating the optical flow of the left face [fxlf fylf] and the
right face [fxrf fyrf]. To cast optical flow within the linear
Kalman flow equations, we employ a simple trick to convert
the 2D vector addition of optical flow to multiplication by
setting of1 =

xlf+fxlf

xlf
, of2 =

ylf+fylf

ylf
, of3 =

xrf+fxrf

xrf
and

of4 =
yrf+fyrf

yrf
. This allows us to specify a transition matrix

F =
(
I3 0
0 OF

)
, where OF =

(
of1 0 0 0
0 of2 0 0
0 0 of3 0
0 0 0 of4

)
. Augmenting

B(k) = [Br(k);0], we write the full predict equation as

q(k + 1) = F q(k) +B(k) u(k) + w, (4)

where w represents the process noise in the MEMS con-
troller and the target motion and is denoted as covari-
ance matrices Qr and Qt. Let the covariance matrix of
the state vector (MEMS mirror + target faces) be Pk =
[Pr(k) 0; 0 Pt(k)], where Pr(k) is the covariance matrix
representing the uncertainty in the MEMS mirror state and
Pt(k) is the convariance matrix representing the uncertainty
in the target location. Then the change in uncertainty is

P (k + 1) = [Br(k)TPrBr(k) 0; 0 Pt] + [Qr(k) 0; 0 Qt(k)],
(5)

where the untracked noise is represented by the covariance
terms of the noise in the MEMS controller and the target Qr

and Qt.
The update step for the entire system is given by two

types of sensor measurements. The first is the proprio-
ceptive sensor based on the voltage measurements made
directly with a USB oscilloscope that receives the same
voltages sent to the MEMS. The second is a camera that
views the reflections of the mirror and applies a standard
face recognition classifier to each location, determining a
probability distribution of left and right face locations across
the FOV. From these two measurements we can propose
both the estimated state vector and its covariance matrix,
[z(k), R(k)]. Note that the measurement function (usually
denoted as H(k)) is the identity in our setup since all the
probability distributions share the same domain, i.e. the

2D plane Π created in front of the sensor. The remaining
Kalman filter equations are

K
′

= P (k + 1)(P (k + 1) +R(k + 1))−1 (6)

q
′
(k + 1) = q(k + 1) +K

′
(z(k + 1)− q(k + 1)) (7)

P
′
(k + 1) = P (k + 1)−K

′
P (k + 1) (8)

3.1 Multiple Target tracking
While we focus on two target tracking in this paper,
we believe it is feasible for more than two object track-
ing. Consider a set of gaussians G(n) = {g0, g1, .., gN}
within the parallel plane Π. We propose each gaussian
∈ G(n > 0) has a unique Lissajous descriptor D(n) =
{[L1, α1], [L2, α2], .., [LN−1, αN−1]}, where L is the Lis-
sajous bound and α is the angle to a reference vector such
as the the parallel lower edge of the MEMS mirror. As the
gaussians move throughout Π we believe it feasible to track
G(n) given initial descriptors D(n) by altering the Lissajous
scan through traversing G(n) in series and updating the
next scan path according to the respective D(n). Since our
camera’s frame rate decreased when increasing the length
of G(n) using the point-to-point algorithm, we assume the
camera frame rate will also decrease with Lissajous scanning
as G(n) increases, but to a lesser extent due to Lissajous
scanning speed.

