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“You can’t feel speed, only acceleration”
- David Holz, Midjourney
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Foveation is an emergent trait of biological vision systems that concentrates sensing

resources only where necessary for survival. Inspired by the evolution of foveation over millions

of years, this dissertation presents foveated algorithms, cameras, and depth sensors that use

similar ideas as biological vision systems to improve computer vision and machine learning

performance without using more sensing resources. The results from this dissertation suggest that

foveated sensing is a promising direction for the design of imaging sensors in the future.
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CHAPTER 1
INTRODUCTION

1.1 Foveation

Foveation has naturally evolved in biological vision systems, principally as an adaptive

mechanism for survival. The majority of animals, including humans, possess a retina in the eye

where the center is densely packed with cones in contrast to the peripheral regions. This

non-uniform distribution of cones is not a design flaw but rather an evolutionary feature to

enhance visual acuity precisely in the direct line of sight. Essentially, this specialized

arrangement gives the eye super-resolution capabilities.

Due to limitations set forth by evolutionary constraints, animals are inherently equipped

with a fixed, non-expandable number of cones in their eyes. Consequently, the eye has cleverly

evolved to utilize this constraint to its advantage by more tightly packing these limited cones in

the center of the visual field. This elegant design amplifies the eye’s maximum resolving

capabilities, allowing for sharper and more detailed vision where it matters most. While the exact

reasons for this evolutionary development are still a matter of scientific exploration, it is widely

believed that this adaptation serves functions such as facilitating more effective hunting, enabling

nuanced communication, and providing for a diverse set of other visual tasks that would be

substantially more challenging if the fixed number of cones were dispersed uniformly across the

entire field of view.

This dissertation applies these insights from foveation in biological systems to artificial

imaging systems. By doing so, the objective is to substantially boost the performance of

downstream computer vision technologies without the need for additional sensing resources.

Specifically, we can draw parallels between the cones in the biological retina and the pixels or

laser power in artificial imaging systems like cameras, LiDAR, and radar. Adopting the principles

of foveation in these technologies has a multitude of theoretical as well as practical implications.

It not only provides a new paradigm for the design and functionality of imaging sensors, but also

offers avenues for more efficient and resource-effective systems, ranging from everyday digital

cameras to advanced LiDAR and radar systems utilized in a wide array of applications.
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1.2 Dissertation Organization

In addition to the introduction and conclusion, there are three technical chapters that outline

the contributions in this dissertation. These technical chapters are outlined below.

In Chapter 2, we investigate the limitations and bottlenecks faced by contemporary camera

systems that typically capture their entire visual field indiscriminately [115, 114]. While the

realm of active vision research over the past several decades has proposed a plethora of foveating

camera designs aimed at selective scene viewing, the impact of such innovations has largely been

constrained by the slow, often cumbersome options available for mechanical camera movement.

To address this pressing issue, we introduce a novel foveating camera design called FoveaCam.

FoveaCams obtain high-resolution imagery concentrated on multiple regions of interest. We

discuss the complete hardware and software design of the FoveaCam hardware prototype. We

then show that FoveaCam improves machine learning based eye tracking performance at long

ranges. We then show extremely long range results with FoveaCam adaptively zooming onto

multiple regions of interest 1000 meters away.

In Chapter 3, we address the limitations of active depth sensing, particularly the trade-offs

between sensing range, power consumption, and eye safety [117]. We propose a foveating active

depth sensor that focuses light patterns only on specific regions of interest where depth

information is crucial and where traditional passive stereo methods fall short. Through a

comparative analysis with existing methods like full-frame projection, line scanning, and point

scanning, our adaptive approach proves to consume the least power while maintaining optimal

eye-safety distance and achieving the same maximum sensing range. We validate these findings

with two hardware prototypes: one using a phase-only spatial light modulator (SLM) and another

utilizing a micro-electro-mechanical (MEMS) mirror combined with a diffractive optical element

(DOE). Experimental results confirm that our method efficiently estimates higher-quality

geometry while maintaining eye safety.

In Chapter 4, we investigate an end-to-end learning based control approach for foveating

imaging systems, termed SaccadeCam [116]. Our approach employs a self-supervised network

11



for foveating camera resolution, specifically tailored for monocular depth estimation. We show

that it is possible to learn where to distribute pixels to boost monocular depth estimation

compared to cameras that use the same resolution but undistributed. We show experiments in

simulation on the Kitti self driving car dataset [36] and in the wild on a foveating camera

prototype running neural networks for control on an embedded system.
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CHAPTER 2
PASSIVE FOVEATED IMAGING

Most cameras today capture images without considering scene content. In contrast, human

eyes have fast mechanical movements that control how the scene is imaged in detail by the fovea,

where visual acuity is highest. This concentrates computational (i.e. neuronal) resources in places

where they are most needed. Foveation and related ideas have been studied in robotics and active

vision [96, 2, 33, 12], although these have been constrained by relatively slow pan-zoom-tilt

(PZT) cameras and robot motion.

Figure 2-1. Real time foveation on multiple regions of interest [115, 114].

In this paper, we present a foveating camera design called FoveaCam, that distributes

resolution onto regions of interest by imaging reflections off a scanning micro-electro mechanical

system (MEMS) mirror. While MEMS mirrors are widely used in computational cameras for

modulating illumination [84, 126], we use them to modulate viewing direction, much like

catadioptric cameras [39].

MEMS mirrors are compact, have low-power performance and are fast. Speed, in particular,

allows the capture of near-simulatenous imagery of dynamic scenes from different viewing

directions. In fact, the mirror moves faster than the exposure rate of most video cameras,

13



removing any visual cues that viewpoint has changed from frame to frame. Effectively, the

images from a single passive camera are interleaved from multiple virtual cameras, each

corresponding to a different mirror position.

Leveraging the fast mirror speed to multiplex the viewpoint over multiple

regions-of-interest (ROI) is only possible with a fast control strategy to decide which parts of the

scene to capture at high resolution. We have adapted an efficient robot planning algorithm for

MEMS mirror control, which can be optionally integrated with a target tracker. Instead of

planning slow robot motion and varying PZT on the robots’ onboard cameras, our new control

algorithms enable quick, computationally light-weight, MEMS-mirror based changes of camera

viewpoint for dynamic scenes.

We illustrate our camera’s utility through remote eye-tracking, showing that multiplexing

resolution with FoveaCam results in higher fidelity eye-tracking. Remote eye tracking is an

application that highlights the advantages of our novel camera design and control algorithms.

Human eyes are a relatively small ROI, compared to faces and bodies, and eyes exhibit small and

fast movements. Thus remote eye tracking tests those features of our camera that may, in the

future, be used to enable other challenging dynamic imaging applications. In summary, our

contributions are:

1. A novel sensor for dynamic scenes that temporally distributes its angular resolution over the

FOV using reflections off a fast MEMS mirror. We discuss the system’s optical

characteristics and calibration.

2. An extension of the unicycle model for robot control to change the MEMS mirror path for

pairs of targets. Our control algorithm is based on new closed form solutions for differential

updates of the camera state.

3. A proof-of-concept gaze tracking application, created by fine tuning a recent eye-tracking

neural network, demonstrating that our system enables better eye tracking at 3m range

compared to a high-resolution commercial smartphone camera at the same location and

14



with the same resolution.

2.1 Related Work

Active vision and adaptive sampling. Ideas from visual attention [33, 12], have influenced

robotics and vision, and information theoretic approaches are used to model adaptive 3D sensing

for SLAM and other applications [113, 17, 103, 25]. Efficient estimation algorithms have been

shown for adaptive visual and non-visual sensing on robots and point-zoom-tilt (PZT) cameras

[13, 130, 28]. We propose to use active vision to drive the MEMS mirror directly in the camera,

allowing for foveating over regions of interest.

MEMS/Galvo mirrors for vision and graphics. MEMS mirror modulation has been used

for structured light [101], displays [59] and sensing [84]. We use MEMS mirrors to modulate

viewing direction. MEMS mirrors used in LIDARs, such as from NASA and ARL [31, 108, 69],

are run at resonance, while we control the MEMS scan pattern for novel imaging strategies. Such

MEMS uses have been shown [63] for highly reflective fiducials in both fast 3D tracking and VR

applications [82, 81]. We do not use special reflective fiducials and utilize active vision

algorithms for MEMS mirror control. [105] shows a MEMS mirror-modulated 3D sensor with the

potential for foveation, but without the adaptive algorithms that we discuss. In vision and

graphics galvo mirrors are used with active illumination for light-transport [48], seeing around

corners [87] and reconstruction with light curtains [126]. In contrast, the foveating camera

presented here passively uses mirrors to image regions of interest in real-world scenes, compared

to calibration-target oriented work [110, 18]. Our research is closest to [54] which was focused

on static scenes, while we focus on dynamic scenes and control algorithms.

Selective imaging and adaptive optics. Our approach is similar in spirit to optical

selective imaging with liquid crystal displays (LCDs) [138] and digital micro-mirror devices

(DMDs) [84]. Because we use 2D scanning MEMS mirrors, we are able to allow the angular

selectivity of [138] with the MEMS-enabled speed of [84]. Our design is the first to use a MEMS

mirror to image dynamic scenes, although foveated designs have been proposed for static scenes,

such as [104, 74]. Another related approach that uses fast optics for incident viewing is

15



atmospheric sensing through turbulence with fast adaptive optics [9] with the difference being

that we will show fast adaptive scene-specific imaging. Further, while we use a small MEMS

mirror with many advantages of high-speed and low wear-and-tear, similar approaches have been

tried with motor-driven mirrors [83].

Compressed sensing. Our approach of selectively imaging what is related to optically

filtering light-fields for imaging tasks [100, 85, 70] and compressive sensing [124]. While there

exist CS techniques for creating foveated imagery [22, 74], achieved sometimes during image

capture, our goal is to distill visual information inside the camera, with MEMS mirror control,

without requiring computationally intensive post-capture processing such as L1 optimization.

Finally our approach involves fast modulation of the viewpoint, whereas fast temporal

illumination modeling has enabled light-transport imaging [45, 86, 90, 1] and transient

imaging [123, 49].

Remote gaze tracking. Previous efforts have built eye-trackers for use at either close

distances or remotely using pan-zoom-tilt (PZT) cameras for applications such as home

entertainment [21, 50], smart offices [25], outdoor advertising [65] and driver monitoring [93].

Depth and pose from stereo pairs has enabled gaze tracking from longer distances [11, 37]. We

are the first to use a MEMS-mirror based foveating camera design for remote eye tracking. In our

experiments, we track gaze from two people at 3m distance, separated by about a meter, which is

currently not possible with any other technique. Further, our technique can easily accommodate

multiple people with a single camera of high enough frame rate, since the MEMS mirror can

move at KHz rates. In contrast, for methods that rely on PZT for dynamic scenes, frames are lost

by the motorized sensors, unless each target is allocated a dedicated camera.

Large FOV cameras. A natural argument against foveated imaging is to use a large field of

view sensor. [23] demonstrated a camera for gigapixel imaging using a ball lens that overcomes

lens resolution limits induced by aberrations. This camera uses a camera array on a PZT style

motor. The proposed gigapixel camera fulfills a different role than we intend to fill with

FoveaCam. The compactness and low bandwidth nature of FoveaCam lends itself towards mobile
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and resource constrained environments, where the camera array and PZT motor from [23] may

prove burdensome.

Fast tracking with galvanometer mirrors. Tracking with large galvo mirrors has been

shown by [66]. This system tracks an object through a FOV via optical flow, and does not

distribute resolution spatially to other objects. Galvo mirrors are very large and prone to over

heating. Furthermore many galvo mirrors only rotate along one dimension, and two galvo mirrors

are required for two dimensional tracking such as in [66]; a single MEMS mirror can rotate in two

dimensions due to the gimbal-swivel design. Finally, [66] construct a very large high-bandwidth

system whereas ours can run in embedded environments. Our advantages with FoveaCam include

compactness, low bandwidth, 2D tracking, and a robust control algorithm for tracking multiple

targets in a scene. Again, our advantage lies in resource-constrained applications.

2.2 Foveating Camera Theory and Design

We use a MEMS (micro-electro mechanical) swiveling mirror to direct the foveating

camera viewpoint. The advantages of the MEMS mirror are speed and compactness. Figure 2-2

demonstrates that since the MEMS tilt angle ω changes the virtual camera viewpoint, we are able

to generate multiple viewpoints at the inherent speed of the MEMS (typically in tens of KHz).

In our experiments, we assume the mirror fills the field-of-view (FOV) of the camera as in

Fig. 2-2. We do this using a simple triangle-based scaling equation. We setup the equation by ray

tracing reflection points to behind the mirror, yielding the virtual camera location. The system can

then be solved using thin lens equations to determine the distance an object needs to be from the

virtual camera to fill θ and have focus. From the figure, and from simple triangles, the camera

FOV is θ = 2 atan( s
2 f ), where s is the sensor’s longest dimension and f is the camera focal

length. Assuming a mirror tilt α to the horizontal given by π

4 , then full fill of the mirror requires

the satisfaction of the following equations, where M is the largest mirror dimension and d is the

mirror-to-camera distance along the optical axis,
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Figure 2-2. Moving mirror creates virtual views [115].

d =
M
2

sin(α) cot(
θ

2
). (2-1)

We pick focal lengths and camera resolutions to target imaging human heads at 5m-10m

distances. In particular, for a M = 3.0mm Mirrorcle mirror, we use a f = 35mm lens and CMOS

OV2710 1/2.7” s = 5mm camera sensor, whose FOV is filled when the mirror-camera distance is

35mm. This enables a typical human head to fill θ when standing 2050mm from the virtual

camera, allowing multiple people to be in the scene at 5m-10m distances while maintaining focus

and high resolution on subjects. We chose α to be 45 degrees so an orthogonal relationship

between the camera and virtual camera is upheld to ensure the virtual views do not see the real

camera or system optics.

The latest FoveCam device can be found in Figure 2-3. It includes a NVIDIA Jetson Nano

for control, a Kurokesu 250mm L84 zoom lens, 6.4mm Mirrorcle MEMS Mirror, and FLIR

Blackfly S 16S2C Board Level Camera. We show recent results from this prototype in Figure 2-1

at 1000 meters away.

2.2.1 Navigating the Design Space

Using the equation above, we developed a simple calibration procedure for a user who

provides sensor dimensions, camera lens properties, and MEMS mirror size, the model calculates

18



Figure 2-3. FoveaCam hardware prototype [115].

the necessary MEMS mirror-camera distance to minimize vignetting, the optimal distance for a

face to fill a desired field of view of the image, and the maximum field of view given the tilt of the

MEMS mirror.

Our model predicts the distance a face needs to be from the virtual camera in order to fill

either the horizontal or vertical fields of view of the camera, and the expected resolution of a face

bounding box at this distance. We show experiments for validating these calibrations in Table 2-1

where the ground-truth resolution is determined by using a face classifier and counting pixels

within the predicted face bounding box. Our model can be calibrated for any desired object size

that fits within the FOV.

2.2.2 Resolution Calibration

We used a 305mm x 305mm USAF 1951 Standard Layout chart from Applied Image Inc. to

validate the resolution of our system across distances. To be visible in Near Infrared Wavelengths,

Table 2-1. Model Field of View Error (%).

Distance (m) Mirror in Camera (%) No Mirror (%)
2 8.85 9.33
3 6.75 2.95
4 12.26 6.52
5 8.89 2.51
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we obtained a custom print of this standard pattern. We determined system resolution by

inspecting the contrast between the last visible and the first non-visible group of lines. The

frequency of the last group and the chart size provides the resolution.

To show the resolution robustness of our system, we compare experiments with the

resolution chart for three cases: the mirror in our system, our foveating camera with no mirror in

system, and an iPhone 6 Plus rear facing 12MP camera. Figure 2-4 shows our data at 4 meters for

the three cases. Note our camera uses a 1/3” sensor, .003mm pixel size, and 35mm lens resulting

in a 1080x1920 resolution while the iPhone 6s Plus uses a 1/3” sensor, .00122mm pixel size and a

4.15mm lens resulting in a 3024x2268 resolution.

Our experiments show that imaging the mirror gives a resolution loss (lower frequency)

compared to imaging without the mirror, and this is expected due to blur caused by the MEMS

mirror cover glass and adding an element to the light path in general. Our system with or without

the MEMS mirror still outperforms the iPhone 6 Plus. The average system resolution of the

iPhone 6 Plus is .00097 cycles/mm, the average system resolution when imaging the mirror is

0.010 cycles/mm, and the average system resolution when imaging without the mirror is .018

cycles/mm. A higher cycles/mm means the system was able to detect higher frequencies (distinct

lines) on the chart.

20



Figure 2-4. Resolution experiments [115].
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2.2.3 Controlling the MEMS Mirror Motion

Given an optically calibrated foveating camera, as described by the previous section, we

wish to move the MEMS mirror to best capture the scene. As in Fig. 2-2, our camera captures

reflections off the MEMS mirror, whose azimuth and elevation are given by changes in control

voltages over time, (θ(V (t)),φ(V (t)) over the mirror FOV ωmirror.

2.2.3.1 Problem Setup

Let the system bandwidth be M pixels/second. Given an integer k > 0, we use a camera that

captures M
k pixel images at k images/second, in the foveating sensor. Since the mirror moves

quickly, new active vision control is possible to distribute the k instances of the viewing cone

within a second.

Consider a virtual plane Π perpendicular to the optical axis and parallel to the MEMS

mirror in a resting, horizontal state, i.e. (θ = 0,φ = 0). Π is a fixed distance from the MEMS

mirror and is placed at the working distance of the camera where the subjects being imaged are.

Every angular pose of the MEMS mirror (θ ,φ) corresponds to a location (x,y) on Π given by

perspective scaling. For the purpose of this paper, we focus on targets that are the faces of two

people. Long range eye tracking is possible if the mirror moves quickly between the two face

locations. We later discuss how to adapt this two target model to multiple targets.

Our goal is to move the mirror across a 1D line segment of length Lr that maximizes the

chances of overlapping with the targets. Let one of the end points be denoted by (xr,yr), while its

orientation is given by the angle αr w.r.t an arbitrary reference vector, such as one parallel to the

lower edge of the MEMS mirror.

We denote the state of the sensor by the triplet qr = (xr,yr,αr), and this state exists in a

space of possible configurations given by the sensor hardware limits for 1D motion,

U = (Lmin,Lmax)× (ωmin,ωmax). U relates to (xr,yr,αr) because (xr,yr,αr), lying in plane Π, are

constrained by U. The problem of control requires a solution that changes the state qr of the

sensor to enable target imaging.

Lmin and Lmax correspond to the min and max distance between regions of interest in Π with
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Lmin = 0 and Lmax < 2ωmax . ωmin = 0o and ωmax is given by

ωmax = tan(ωmems)+FOVf ovea (2-2)

where ωmems corresponds to the MEMS mirror maximum tilt and FOVf ovea corresponds to

the field of view for the camera imaging the MEMS mirror.

There are two ways to control the MEMS mirror to move in a 1D motion. The first is

point-to-point and the second is using resonance, creating a Lissajous pattern.

Point-to-Point algorithm. Given prior knowledge of the objects location in the scene, which

can be given by a co-located sensor or known initialization, it is then possible to image each

object through updating the respective dictionary mirror coordinates to keep the moving objects

in frame.

Using the point-to-point control strategy, our foveating camera begins by initializing camera

parameters and sending initial [x, y] coordinates to the MEMS controller. These coordinates

indicate where the optical axis of the mirror points to on the arbitrary plane Π. The camera

capture is triggered for every sample streamed to the mirror from the controller, and this trigger

signal is delayed by 5ms to allow the MEMS mirror to settle for clean images. The image is then

processed, which explains the delay between mirror movement and camera exposure in Figure

2-5, and the voltages sent to the MEMS mirror are scaled to satisfy a given criteria, such as

keeping an object in frame at the given coordinate for that object. We add an additional delay

before the mirror moves again for processing to finish. This strategy results in a total frame rate of

80Hz with the camera imaging 640x480 at 8-bit RGB. We use 640x480 resolution since real time

imaging is infeasible at the native 1920x1080. See Figure 2-5 for a visualization of our cameras

timing.

Real-time demonstration. Figure 2-1 shows a real-time demonstration of our foveating

camera using the point-to-point control algorithm for tracking four regions outside at 1000 meters

at 20Hz for each region of interest.

Lissajous pattern. Our main control contribution is providing closed form differential
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Figure 2-5. Timing description of our foveating camera [115].

updates to MEMS mirror 1D lissajous scanning motion. However, we only use lissajous scanning

for the proof of concept control experiment in Section 2.3.5, and use point-to-point for the real

time demonstration and data collection for eye tracking. The benefit of lissajous scanning over

point-to-point is lower latency due to softer control on mirror coordinates. 1D lissajous scan

patterns are realized by,

y(t) = Asin(2π fxt +φx) (2-3)

Now consider a 1D lissajous wave of amplitude Lr
2 , bounded by the face locations. W.l.o.g

consider one of these locations to be the “anchor” of the system, (xr,yr), while its orientation is

given by the angle αr w.r.t an arbitrary reference vector, such as one parallel to the lower edge of

the MEMS mirror.

Unlike the previous point-to-point method, the Lissajous pattern runs in resonance, which

has both advantages and disadvantages. Speed and the lack of any settling time, as in Figure 2-5

are an obvious advantage. However, since the MEMS mirror is in a balistic mode, images are

obtained in the gaps between the target that must automatically be removed. Finally, the end

points of the mirror motion may not be consistent, and therefore alignment must take place.

In the next section, we detail how to update qr, the state of the mirror, which is general and

impacts any technique for 1D mirror control for two targets.

2.2.3.2 Control Algorithm Overview

To change the state to match the people’s motion around the scene, we define a control

vector ur = (vr,ωr) for a new desired motion, by specifying the velocity vr by which the length of
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the 1D motion should change and the angular velocity ωr by which the angle of the 1D motion

should change. Proability distributions can be obtained from a co-located sensor instead of the

Kalman filter. Our contribution mainly lies in the subsequent sections Sect. 2.2.3.4 and Sect.

2.2.3.6, where we discuss how to come up with a control vector, given previously captured

imagery from our sensor. Our model and control algorithm are adapted from the unicycle model

of robot control [129].

2.2.3.3 Optional Kalman Filter for State and Target Tracking

A probability distribution of the targets over time is necessary to control the viewing

direction of the MEMS mirror in our camera. For experiments in Section 2.3 we have used a

vision-based face-tracker as a proxy for this filter. We define a control matrix Br(k) to update the

state vector using the control vector ur(k):

qr(k+1) = I3qr(k)+Br(k)ur(k)+Qr, (2-4)

where Qr is the covariance matrices of the MEMS controller noise and I3 is the identity

representing the state transition for a calibrated, controlled sensor (i.e. only our control vector and

noise matters in changing the state).

Let the left and right face locations, on plane Π, be q f = [xl f yl f xr f yr f ]. Adding the face

locations to the sensor state gives a full state vector, q(k) = [qT
r (k) qT

f (k)]
T . Since we have no

control over the location of the faces, the full control vector u(k) = [ur(k) 0]T . The full prediction

is

q(k+1) = F q(k)+B(k) u(k)+w, (2-5)

where F is a target motion matrix, based on optical flow equations, and w represents the process

noise in the MEMS controller and the target motion and is denoted as covariance matrices Qr and

Qt . Let the covariance matrix of the state vector (MEMS mirror + target faces) be

Pk = [Pr(k) 0;0 Pt(k)], where Pr(k) is the covariance matrix representing the uncertainty in the
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MEMS mirror state and Pt(k) is the covariance matrix representing the uncertainty in the target

location. Then the change in uncertainty is

P(k+1) = [Br(k)T PrBr(k) 0;0 Pt ]+ [Qr(k) 0;0 Qt(k)], (2-6)

where the untracked noise is represented in the MEMS controller and the target as covariances Qr

and Qt .

The update step for the entire system is given by two types of sensor measurements. The

first is the proprioceptive sensor based on the voltage measurements made directly with a USB

oscilloscope that receives the same voltages sent to the MEMS. The second is a camera that views

the reflections of the mirror and applies a standard face recognition classifier to each location,

determining a probability distribution of left and right face locations across the FOV. From these

two measurements we can propose both the estimated state vector and its covariance matrix,

[z(k),R(k)]. Note that the measurement function (usually denoted as H(k)) is the identity in our

setup since all the probability distributions share the same domain, i.e. the 2D plane Π created in

front of the sensor. The remaining Kalman filter equations are

K
′
= P(k+1)(P(k+1)+R(k+1))−1. (2-7)

q
′
(k+1) = q(k+1)+K

′
(z(k+1)−q(k+1)). (2-8)

P
′
(k+1) = P(k+1)−K

′
P(k+1). (2-9)

2.2.3.4 A Metric for Good Mirror Control

We define a metric for control as the difference between the groundtruth (unknown) state

q(k) and the current state as predicted by the filter q
′
(k+1). This is useful to quantify the tracking

performance of our system. However, if there is no face detection, then the filter cannot be

applied and we default to the previous state moved by the control vector, given by q(k+1). The

filter cannot be applied because the face detections are necessary to fully define our state space
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q(k). Let Pd be the probability that all faces were detected successfully.

Mk = PdE[e
′
(k+1)T e

′
(k+1)]+(1−Pd)E[e(k+1)T e(k+1)]. (2-10)

where

e
′
(k+1) = q(k)−q

′
(k+1). (2-11)

e(k+1) = q(k)−q(k+1). (2-12)

(2-13)

Using the trace trick, similar to [129], we can convert Mk into an expression using the covariance

matrices,

Mk = tr[P(k+1)]−Pd(tr[P(k+1)]− tr[P
′
(k+1)]). (2-14)

Since tr[P(k+1)]− tr[P
′
(k+1)] is always positive (due to uncertainty reduction of a Kalman

filter), maximizing Pd reduces the error Mk. This is our metric for good performance, which

should illuminate how to control the MEMS mirror with the control vector ur.

2.2.3.5 Updating the Control Vector

The conclusion of the previous section’s discussion can be depicted as a control law,

maxurPd (2-15)

where Pd is defined as the probability that all the faces are detected, and is given by integrating

the probability of seeing a face over the MEMS mirror path given by the state of the sensor,

qr(k) = (xr(k),yr(k),αr(k)). We now discuss a gradient-based iterative update to the control

vector, given the sensor state and uncertainty.
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.

Calculating Pd as a slice. Given a parameter s, we can express the locations along which the

probability Pd must be integrated as,

Pd(qr(k)) =
∫ L

s=0
ft(xr(k)+ scosαr(k),yr(k)+ ssinαr(k))ds (2-16)

where ft is the probability distribution function of the faces in the canonical plane Π. The

distribution ft comes from the estimates of face location, which could be from the Kalman filter

or from another process, and can be modeled as a pair of bi-variate Gaussian distributions, of

equal weight (i.e. the mixing parameter is 0.5), such that ft(x,y) = fl(x,y)+ f r(x,y), where each

Gaussian component centered at the two previously estimated left and right face locations given

by q f (k−1) = [xl f (k−1) yl f (k−1) xr f (k−1) yr f (k−1)].

In other words, Pd is an integral along a slice through two bivariate Gaussian distributions.

For each left and right case, we know the correlation matrix of both 2D gaussians, from the

Kalman filter, given by [σ1l,σ2l,ρl] for the left and [σ1r,σ2r,ρr]. Therefore the term

ft(xr(k)+ scosαr(k),yr(k)+ ssinαr(k)) can be split into two components, where

x = xr(k)+ scosαr(k) and y = yr(k)+ ssinαr(k), the first given by fl(x,y)

1

2πσ1lσ2l

√
1−ρ2

l

e
−

(x−xl f )
2

σ2
1l

−
2ρl (x−xl f )(y−yl f )

σ1lσ2l
+
(y−yl f )

2

σ2
2l

2(1−ρ2
l ) (2-17)

and the second given by fr(x,y)

1

2πσ1rσ2r
√

1−ρ2
r

e
−

(x−xr f )
2

σ2
1r

−
2ρl (x−xr f )(y−yr f )

σ1rσ2r
+
(y−yr f )

2

σ2
2r

2(1−ρ2r ) . (2-18)

2.2.3.6 Arguments for Using Gradient Descent

In this section we argue that maximizing the value Pd , can be tackled with gradient descent.

First we show that Pd has at most two global maxima, by linking it to the well known Radon

28



transform. Second we show that this formulation of Pd is bounded.

Global maxima: Pd is obtained by slicing through the two Gaussians at a line segment given by

qr = (xr,yr,αr). By reconstituting this as a slice through a line with y intercept

yrad = yr + xr ∗ (tan(αr)) and slope srad = tan(αr), we notice that Pd is the Radon transform of a

bi-variate distribution. For each Gaussian distribution individually, this transform has been shown

to be unimodal with a global maxima and continuous [131] for a zero-mean Gaussian. Since

translations and affine transformations do not affect the radon transform, these hold for any

Gaussian distribution. For the sum of radon transforms of two such Gaussians, there can be at

most two global maxima (if these are equal) and at least one maxima (if these overlap perfectly).

Finally, the Radon transform is computationally burdensome for a robot to compute at every

frame, which supports using iterative gradient descent.

Bounded domain: Consider any slice through the bi-variate distribution. Consider a slice that has

the centers of the two Gaussians on the same side of the slice as in 2-7I(c). Then, by moving the

slice towards the two centers, we can increase both components of Pd exponentially and

monotonically. So such a slice cannot maximize Pd . From the above argument, the slice that

maximizes Pd goes through a line segment between the centers of the two Gaussians as in

2-7II(c). In other words, the domain, within the Radan transform of bi-variate Gaussians, where

we must search for the maximal slice, is bounded.

Optimal path is not the line joining Gaussians’ center: While the line joining the Gaussians’

center is a useful heuristic, it is not a general solution since the length of the integral L could be

smaller than the distance between the Gaussian centers. Secondly, the heuristic tends to work

when the Gaussians are similar; if one Gaussian dominates, as in Fig. 2-6, then the optimal line

can be different.

From these arguments of bounded domain and continuity, the application of gradient

descent is a reasonable strategy for lightweight optimization of the control law.

2.2.3.7 Gradient Descent

Gradients and algorithm We compute the Jacobian (i.e. derivatives) of Pd(qr(k+1)), given by ur
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Require: Kalman filter outputs, valid space U, epsilon error threshold ε , learning rate η , and
initial control vector ur

Ensure: Updated control vector ur
while True do

utmp
r ← ur +η

δPd(qr(k+1))
δur

if utmp
r ̸∈ U then
return

else if ∥utmp
r −ur∥< ε then

return
else

ur← utmp
r

end if
end while
return ur

Object 2-1. Gradient-based update of control vector ur

Figure 2-6. Heterogeneity [115].
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Figure 2-7. Simulations of 1D slice optimization [115].

Figure 2-8. Our eye tracking setup and gaze pattern used for our finetuning dataset [115].

δPd(qr(k+1))
δur

=
δPd(qr(k+1))

δqr(k+1)
δqr(k+1)

δur
(2-19)

Since the second term is the sensor motion model Br(k)δ t, we just need to calculate the first

term,

δPd(qr(k+1))
δqr(k+1)

=


δ

δxr
Pd(qr(k+1))

δ

δyr
Pd(qr(k+1))

δ

δαr
Pd(qr(k+1))

 (2-20)
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We can rewrite this by setting x = xr(k)+ scosαr(k) and y = yr(k)+ ssinαr(k), and by splitting

ft into left and right Gaussians, as

δPd (qr(k+1))
δqr(k+1)

=


δ

δxr

∫ L
s=0 fl (x,y)ds

δ

δyr

∫ L
s=0 fl (x,y)ds

δ

δαr

∫ L
s=0 fl (x,y)ds

+


δ

δxr

∫ L
s=0 fr(x,y)ds

δ

δyr

∫ L
s=0 fr(x,y)ds

δ

δαr

∫ L
s=0 fr(x,y)ds

 (2-21)

These gradients can easily be calculated after every iteration of the Kalman filter, allowing

for the closed form update of the MEMS mirror based on the movement of the faces, sensor state

and uncertainty. In Algorithm 2-1 we use these gradients to update the control vector.

Simulations: In Fig 2-7 we show simulations of Algorithm 2-1 on 20 pairs of 2D Gaussians. In

Fig 2-7I(a) we select four from these 20, showing the ground-truth “slice” that maximizes target

probability, Pd , calculated from the radon transform. In Fig. 2-7I(b) we show the results of the

experiments. For each Gaussian pair, we began the gradient descent at an initialization from the

ground-truth, using a shift of mean zero and standard deviation σ such that 3∗σ varies from 0 to

about a 25% of the image width. This means that at the extreme case, initialization could be

anywhere in a 50% chunk of the image near the ground-truth. Fig. 2-7II shows similar

experiments where we only allowed initializations in the constrainted domain of the segment

between the maxima of the Gaussians. This reduces the overall error percentage slightly in Fig.

2-7II(b).

Fig. 2-7I-II(b) graphs show Euclidean distance between the converged slice and ground

truth, averaged over five trials. Note that most results converge even for large deviations from the

ground-truth. In Fig. 2-7I-II(c) we show the convergence path for these examples, and in Fig.

2-7I-II(d) we show that the L2 norm of the gradients decreases as it converges.

Practical considerations: While we have provided gradients for optimization, other factors

influence convergence such as the learning rate. Failure cases of our setup are due to

initializations that are too distant from either Gaussian and, therefore, have small gradients (i.e.

local minima). Again, more capable optimization strategies, using our gradients, can result in

better convergence.
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2.3 Experiments

We demonstrate the benefit of modulating a dense low-FOV over a wide-FOV through

remote eye-tracking, where both high angular resolution and wide FOV for multi-person imaging

are necessary. Remote eye-tracking for frontal faces has potential applications in situations where

the faces are directly viewed by the camera, such as human-robot interaction, automobile safety,

smart homes and in educational, classroom settings.

In this section, we describe our testbed for remote eye-tracking, where we compare the eye

tracking performance using the iTracker convolutional neural network [68] for both our foveating

camera and a near-co-located smartphone. We also present a proof-of-concept remote

eye-tracking system that uses our MEMS mirror enabled foveating camera to capture images.

2.3.1 Our Eye Tracking Setup

Our setup, shown in Fig. 2-8, consists of our foveating camera, placed between two NIR

floodlights. The setup is at the top of a textureless lambertian plane of width approximately

100cm×100cm. A video projector, placed at 2m distance, projects a 5x5 grid of points spanning

the width and height of the lambertian plane, as in the figure.

Two subjects at 3m distance from the camera, view the patterns, focusing on each dot for

about 5 seconds. The smartphone camera has a FOV of 55◦ and views both subjects. Our camera

has a FOV of 8.6◦ and alternates between the two subjects. In Sect. 2.3.5, we describe how to

control the movement of the mirror due to subject motion, but in this section we will assume that

Figure 2-9. Sample images from our eye tracking dataset [115].

33



only the eyes of the subjects move. Therefore in all our experiments, for the same pixel

bandwidth of 1920×1080 for our sensor and the smartphone, we are able to increase the angular

resolution by a factor of 55
8.6 ≈ 6 times. This is the main advantage of the foveating camera. Now

we discuss the impact of this increased resolution on eye-tracking performance.

2.3.2 Finetuning a Gaze Tracking Network

The iTracker convolutional neural network [68] takes in four inputs derived from a single

capture of a face (both eyes, cropped face and face location), assumed to be captured on a

smartphone, at arms length from the face. Each of these inputs goes into a dedicated

Alexnet-inspired network, with the eye-layers sharing weights. The outputs of the layers are a 2D

gaze location, relative to the camera; e.g., the output is (0,0) for someone looking directly at the

camera.

86% of the iTracker imagery is iPhone data trained on eye angles varying in y from 2cm

(4.5o) to 10cm (21.8o) and x from -1cm (2.3o) to 5cm (13.5o). To maintain these angles at 3m for

our data, we trained on patterns spanning x from -39cm to 39cm (7.4o) and y from -21cm (4o) to

-82cm (15.3o).

While this network has been trained on the GazeCapture dataset of around 1400 subjects in

a variety of domains, it cannot be used directly on our setup (described next), since the geometry

of the setup is different (i.e. subjects are much further away, 25cm in iTracker vs. 3m for us)

which changes the perspective of how much the eyes appear to move for the same angle. Further,

our data is in the NIR range, which is different domain than the data used in the paper. In all our

results, we compare the original results with fine tuning with domain-specific data collected with

Table 2-2. Random initialization fails (Train/Val error).

Camera L2 Error (10 epochs) (cm)
Smartphone (random initial.) 55.91
Smartphone (iTracker initial.) 6.5

Foveating camera (random initial.) 45.77
Foveating camera (iTracker initial.) 4.45
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our setup. All our training and testing was done at 3m from the camera.

2.3.3 Data Collection for Finetuning

The network performs poorly using the provided network weights at the same span of test

points at 3m as the iPhone tests. This is expected since viewing a 12cm spanned x,y pattern

(iPhone) at 3m gives less than 1o eye angle. Commercial eye trackers typically employ 1o eye

angle tolerance or higher. To circumvent lack of eye angle, we fine tuned the network on data

with the correct in-situ angular properties.

Experiments with four volunteers (3 male and 1 female, see Fig. 2-9(I)) enabled the

collection of fine-tuning data in-situ with the device, in NIR, for the grid pattern in Fig. 2-8 along

with the smartphone. Each data collection experiment lasted 20 minutes, and data was collected

simultaneously for smartphone and foveating camera. We record 400 images per point, giving

10,000 images per subject or 40,000 total images. We use 33,000 images due to faulty face and

eye detections being discarded to maintain high-fidelity data. We randomly split the dataset into

23,000 train, 4,000 validation, and 6,000 test for our foveating camera and smartphone. For

fine-tuning, we begin with identical weights to [68], except we lower our learning rate ten fold.

We do not freeze any layers. We found 10 epoch fine-tuning to fit our dataset properly, and all

results in this section are from 10 epoch fine-tuning.

2.3.4 Experimental Results

In our experiments, the subjects were at 3m distance and six people were involved overall,

four for training and testing, two for the proof of concept experiment in Section 2.3.5. To show

that this relatively small fine-tuning dataset does not adversely affect our results, we show, in

Table 2-2, that validation errors after 10 epochs for both our camera and the smartphone are much

higher when starting from random weights, than from the pre-trained weights. So, our small

dataset is simply used for fine-tuning and does not overfit after 10 epochs, and we do indeed

utilize the 1400 users encapsulated in the pre-trained weights.
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A B C

Figure 2-10. Examples of eye tracking error for various simulated sensors [114].

Simulating angular resolution. We now show the benefit of our foveating camera by

analyzing eye tracking error as a function of simulated angular resolutions for our foveating

camera and smartphone. We introduce a simulation model to downsample and then upsample

network inputs, changing the angular resolution of the inputs. We finetune, validate, and test the

network all using simulated network inputs according to the below simulation model. The test

data is reshuffled for each simulation while the network hyper-parameters remain identical to

section 2.3.2.

Simulation Model. We pick different camera parameters for both our foveating camera and

smartphone. We then downsample and upsample the network inputs based on how many pixels

from each new simulated camera are left over in the original field of view to simulate angular

resolution loss.

Simulation Results. Our simulations show that we can maintain low eye-tracking error even

at very small image resolutions. Figure 2.3.4 demonstrates the eye tracking performance

drastically degrading for the smartphone as angular resolution decreases while our foveating

camera error degrades more gradually and has a much lower extreme. Our foveating camera and

smartphone converged to similar errors at high angular resolutions with the smartphone

performing slightly better at image sizes above 2MP. Even though the simulated angular

resolution of our foveating camera and smartphone are equivalent on Figures 2.3.4 A-C x axis,

downsampling and upsampling causes different degradation’s for our foveating camera and

smartphone since their images were sampled at different native angular resolutions. We do not see

the smartphone outperform the foveating camera until we use a smaller pixel size (larger number
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of pixels) in Figure 2.3.4 C. The smartphone is able to beat the foveating camera because the

foveating camera is degraded just enough after our resizing operation in comparison to the

smartphone to make the resulting true angular resolution worse than the smartphone true angular

resolution after our resizing operation.

See Figures 2-11 and 2-12 for a visualization of the iTracker network output for our

foveating camera and smartphone, respectively. The L2 error of our foveating camera was 5.18cm

and the smartphone was 11.06cm. The camera parameters for this visualization include increasing

sensor pixel sizes by 1.5, using 5mm and 2.5mm lenses for our foveating camera and smartphone,

respectively, giving a common vertical angular resolution of .4 pixels/mm between the

smartphone and foveating camera, as in in Figure 2.3.4 A. Since our native FOV was 466mm x

262mm (W x H), the image size at these parameters was 332 x 104, this clearly shows the benefit

of our camera: we are able to sacrifice significant resolution and maintain high performance.

Figure 2-11. Raw network output for our foveating camera test data with 5.15cm error [114].

2.3.5 Proof-of-concept Control Experiment

Finally, we use the control from Section 2.2.3, along with the eye-tracking capability

described in the previous section, to demonstrate a proof-of-concept capability of our sensor. In

this experiment, one of the pair of persons from our test subjects not used in training, validating,
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Figure 2-12. Raw network output for smartphone test data with 11.06cm error [114].

or testing the network are looking at a square pattern the network has not seen. This pattern has a

smaller span than the 5 x 5 grid used in Section 2.3.

We use a the bounding box from a simple face-tracker [60] as a proxy for the Kalman filter,

and use the a user defined ratio k ≈ 3 to map the maximum box dimension dmax to the variance

σ = k ∗dmax in a symmetric Gaussian centered on the box that approximates the probability

distribution of the face. Combining this for both faces provides the probability distribution of the

targets Pd , required in our control law.

In Fig. 2-13, we show the initial state of the scene for the two test subjects and the

corresponding gaze track for the square at the initial mirror position of [-1 0] for the left person

and [1 0] for the person on the right and the control state is qr = [−1 0 0]. Then, one person

moves, as shown in the figure. Algorithm 1 converges to mirror positions of [-.86 0.331] and

[.915 -0.05] respectively with a state vector of qr = [.915 −0.05 π

24 ]. Note that, at these new

positions, both faces are clearly visible, and the gaze tracking experiment for the square pattern,

redone at this new mirror position, also produces good quality results (6.8cm and 6.03cm L2 error

respectively).

38



Figure 2-13. Proof-of-concept control experiments [115].

Figure 2-14. Foveating camera advantages versus gigapixel cameras [114].
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2.4 Conclusion

Limitations. Multi-object tracking with 2D lissajous scanning is an area of focus moving

forward, and we hope to provide derivations for these mirror position updates in future work to

move towards a generalized control law.

Integrating an auto-focusing element such as a liquid lens into our camera would improve

the shallow depth of field of our camera caused by the MEMS mirror size. Liquid lenses are easily

embedded into camera systems and would allow for increased imaging distance and depth of field.

While our camera is fairly compact at 15cm x 10cm x 10cm, we acknowledge this size will need

to be reduced before foveating cameras could easily be integrated into robotic imaging systems.

Discussion. Further comparison with competing sensors and datasets is necessary to further

show our camera’s performance. We provide initial simulations comparing our foveating image

capture technique to an equivalent full frame camera in Figure 2-14.

Foveating cameras change a cameras viewpoint such that it can see multiple regions of

interest at resolutions and speeds typically not possible. Quickly modulating a pixel-dense camera

viewpoint has direct applications to robotics, augmented reality and autonomous vehicles where

densely sampling specific regions could help complete 3D reconstructions, aid long range visual

navigation tracking, and increase safety by increased sampling on critical regions of interest.
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CHAPTER 3
ACTIVE FOVEATED IMAGING

Active 3D depth sensors have diverse applications in augmented reality, navigation, and

robotics. Recently, these sensor modules are widely used in consumer products, such as

time-of-flight (Lidar[51]), structured light (Kinect V1 [56]) and others. In addition, many

computer vision algorithms have been proposed to process the acquired data for downstream

tasks such as 3D semantic understanding [112], object tracking [53], guided upsampling in

SLAM [95], among other applications.

Unlike stereo cameras that only sense reflected ambient light passively, active depth sensors

illuminate the scene with modulated light patterns, either spatially, temporally, or both. The

illumination encodings allow robust estimation of scene depths. However, this also leads to three

shortcomings: First, active depth sensors consume optical power, burdening wearable devices that

are on a tight power budget. Second, the number of received photons reflected back from the

scene drops with inverse-square relationship to scene depth. The maximum sensing distance is

thereby limited by the received signal-to-noise ratio (SNR). Third, strong, active light sources on

the device may unintentionally hurt the user or other people around. For consumer devices, this

constraint can be as strict as ensuring safety when a baby accidentally stares at the light source

directly. Interestingly, these three factors are often entangled with each other. For example,

naively increasing range by raising optical power makes the device less eye-safe. An active 3d

sensor would benefit from the joint optimization of these three goals, as illustrated in Fig. 3-1(a).

In this paper, we present an adaptive depth-sensing strategy. Our key idea is that the coded

scene illumination need not be sent to the entire scene (Fig. 3-1(b)). Intuitively, by limiting the

illumination samples, the optical power per sample is increased, therefore extending the

maximum sensing distance. This idea of adaptive sensing is supported by three observations:

First, illumination samples only need to be sent to parts of a scene where passive depth estimation

fails (due to lack of texture). Second, depth estimation is often application-driven, accurate depths

are only needed around AR objects to be inserted into the scene. Finally, for video applications,

sending light to regions where depths are already available from previous frames is redundant.
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Figure 3-1. Active foveated imaging for energy-efficient adaptive 3D sensing [117].

Based on these observations, we demonstrate this adaptive idea with a stereo-projector setup (i.e.,

active stereo [134, 27, 5]), where an attention map is computed from the camera images for

efficient light redistribution.

To quantitatively understand the benefits of our approach, we propose a sensor model that

analytically characterizes various sensing strategies, including full-frame (RealSense [64]),

line-scanning (Episcan3D [90]), point-scanning (Lidar [96]) and proposed adaptive sensing. We

establish, for the first time, a framework that jointly analyzes the power, range, and eye-safety of

different strategies and demonstrates that, for the same maximum sensing distance, adaptive

sensing consumes the least power while achieving the shortest (best) eye-safety distance.

Note that the realization of scene-adaptive illumination is not trivial: Common off-the-shelf

projectors simply block part of the incident light, which wastes optical power. We propose two

hardware implementations for adaptive illumination: One is inspired by digital holography, which

uses Liquid Crystal on Silicon (LCoS) Spatial Light Modulators (SLM) to achieve free-form light
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Figure 3-2. Our method overview [117].

projection. The other implementation uses diffractive optical elements (DOE) to generate dot

patterns in a local region of interest (ROI), which is directed to different portions of the scene by a

micro-electro-mechanical (MEMS) mirror.

Our contributions are summarized as follows:

1. We propose adaptive 3D sensing and demonstrate its advantage in a theoretical framework

that jointly considers range, power and eye-safety.

2. We implement the proposed adaptive active stereo approach with two hardware prototypes

based on SLM and MEMS + DOE.

3. Real-world experimental results validate that our sensor can adapt to the scene and

outperform existing sensing strategies.

3.1 Related Work

Active 3D sensing with ambient light noise. Various techniques have been proposed to

address photon noise due to strong ambient light (sunlight), such as choosing a wavelength where

sunlight is weak [92, 127], using a polarizing filter [92]. Gupta [46] uses a theoretical model to

show that instead of illuminating the full scene, concentrating light on different parts of a scene

sequentially improves SNR for structured light, which is demonstrated with a rotating polygonal

mirror. Based on similar principles, MC3D [79] uses a MEMS/galvo-driven laser and an event

camera to achieve bandwidth-efficient scanning. Episcan3D [90] and EpiToF [1] use a

line-scanning laser and a synchronized rolling-shutter camera to achieve fast and efficient depth

sensing. This paper further extends this line of work by showing that, with the freedom to
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adaptively illuminate part of the scene, a lower power budget is needed to achieve the same

sensing range while being safer to the eyes.

Adaptive 3D sensing. Ideas from visual attention [33, 12] have influenced vision and

robotics. Efficient estimation algorithms have been shown for adaptive sensing and

point-zoom-tilt (PZT) cameras [13, 130]. In the 3D sensor space, 3D light-curtains [126, 7, 15]

represent a flexible system where curtains can be adaptively placed in the scene for robotics, and

other applications [97, 4, 3]. Full control of the MEMS mirror enables adaptive sampling for

LIDAR [111, 96, 109] and adaptive passive camera resolution for monocular depth sensing [116].

While previous adaptive systems focus on different aspects such as flexibility, frame rate, among

others, this work studies the interplay between range, power, and eye-safety.

3.2 Signal to Noise Ratio Analysis

The workflow of the proposed adaptive 3D sensing is shown in Fig. 3-2. We use an active

stereo design with two cameras and a projector. The device first captures an image of the scene

and computes an attention map to determine the region of interest (ROI). Hardware-specific

control signals are computed from the attention map such that the projector redistributes the light

to the ROI. Finally, a high-quality depth map can be calculated from captured stereo images.

Before getting into details on how to implement this adaptive illumination in practice, let us

assume an ideal flexible projector for a moment: If we can redistribute the optical power to an

arbitrarily-shaped ROI, how well can it perform? We adopt a model to quantify its depth

estimation performance and compare it to other existing or naively conceived active depth sensing

strategies.

3.2.1 Sensor Model and SNR Analysis

The accuracy of various active depth sensors, including structured light, active stereo,

continuous-wave time-of-flight (CW-ToF), among others, can be quantified by a single metric: the

SNR of the measured light signal (projected by the active illumination source and reflected by the

scene). The noise consists of the photon noise from both the signal itself and the ambient light,
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Figure 3-3. Schematic diagrams and analysis of various 3D sensing strategies [117].

and the sensor readout noise, mathematically defined as follows [46, 47]:

SNR =
Signalprojector√

N2
photon ambient +N2

photon projector +N2
read

=
P

d2at1√
Psunt2 + P

d2at1 +N2
read

(3-1)

where P is the optical power of the projector (assuming an albedo of 1 in the scene), a is the

illuminated area at unit distance, d is the distance of the scene (thus the inverse-square fall-off),

Psun is the optical power of the ambient light, t1 and t2 are the duration when the laser is on and

the camera is active, respectively, and Nread is the standard deviation of the read noise. Ambient

light-induced photon noise dominates in outdoor scenarios and also indoors with power-limited

devices, which is the major focus of the following analysis. In these situations, SNR can be

simplified as:

SNR≈
P

d2at1√
Psunt2

. (3-2)
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When readout noise dominates, which happens in a dark room or at night, SNR can be simplified

as this

SNR≈
P

d2at1
Nread

. (3-3)

Analyzing different sensing strategies. We use this SNR model to compare the

performance of different depth sensors. For a fair comparison, we assume all depth sensors have

equal total optical power P, sensing at same depth d. Their performance is then uniquely

determined by t1, t2 and a. For off-the-shelf full-frame projectors (Fig. 3-3(e)), we denote a = A

which corresponds to the entire FOV, and t1 = t2 = T as both the sensor and the projector are

active during the entire camera exposure T .

Previous work [46, 79, 90, 1] has shown that, instead of flood-illuminating the entire scene,

focusing optical power on different parts of the scene sequentially can lead to higher SNR. To

quantitatively analyze this effect, we represent the illuminated area, laser exposure and camera

exposure as a division of the full-frame case:

a = A/Ra, t1 = T/Rt1, t2 = T/Rt2, (3-4)

where Ra,Rt1,Rt2 are defined as illuminated area divisor, laser exposure divisor, camera exposure

divisor, respectively. SNR is then a function of these divisors:

SNR =

P
d2A/Ra

T/Rt1√
PsunT/Rt2

=
P
√

T
d2A
√

Psun︸ ︷︷ ︸
c

Ra
√

Rt2

Rt1︸ ︷︷ ︸
X

, (3-5)

where c is the SNR of full-frame projection. X is a factor that describes how each method

compares with the baseline full-frame projection. It is difficult to optimize X directly since not

every combination of (Ra,Rt1,Rt2) is feasible in hardware. Nevertheless, it provides a useful tool

to characterize different sensing strategies.

State-of-the-art systems such as Episcan3D [90] implement this idea as a line scanning

scheme, as shown in Fig. 3-3(c). If we assume the total illuminated region of line scanning is the
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same as full-pattern, then Ra = Rt1 = Rt2 = N, where N is the number of scanlines (typically

102−103). By plugging these terms into Eq. 3-5, the SNR of line scanning is X =
√

N times

higher than the full-pattern.

One interesting question is: Can we push this idea further and scan a dot at a time? This

point scanning idea can be implemented with a co-located laser and single-pixel sensor deflected

by a 2D MEMS mirror. Using the same assumption, Ra = Rt1 = Rt2 = Np, where Np is the number

of dots (typically Np = N2 = 104−106). Fig. 3-3(a) shows that dot scanning does offer a higher

SNR and is X = N times higher than the full-pattern. Notice that this SNR benefit comes from the

fact that the laser and the sensor are synchronized: The sensor only receives light from the area

illuminated by the laser at any instant. For their unsynchronized counterparts where the sensor is

a 2D camera that captures the entire 2D FOV during the whole imaging time (easier to implement

in hardware), their SNR is exactly the same as the full-pattern approach (Fig. 3-3(b,d)).

textbfAdaptive sensing. Our adaptive sensor projects a static pattern that does not change

during the entire exposure, Rt1 = Rt2 = 1. However, the optical power is concentrated to a small

ROI, which we assume can be as small as one line in the line-scanning approach Ra = N. As

shown in Fig.3-3(f), our adaptive sensor has a Nl times higher SNR than the full-pattern approach.

In summary, we observed that SNRadaptive = SNRpoint≫ SNRline≫ SNRfull.

3.2.2 Comparison of Power, Range, and Eye-Safety

Sec. 3.2.1 analyzes the SNR for different sensors at the same depth. However, this analysis

is insufficient, since increasing SNR and the maximum range implies a higher risk of eye injury.

In this section, we discuss how this model can be extended to analyze the trade-off between

power, range and eye-safety. We consider two key constraints: maximum sensing distance and

minimum eye-safety distance.

Maximum sensing distance. We assume that for reliable estimation of the depth, the SNR

must be greater than a minimum detection threshold SNRthres. The equality holds when the

maximum sensing distance d = dmax is reached,
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SNRthres =
P
√

T
d2

maxA
√

Psun
X . (3-6)

Rearranging this equation gives

P = kp ·d2
maxX−1 = kp ·d2

maxR−1
a Rt1R−0.5

t2 , (3-7)

where kp is a method-independent constant.

Minimum eye-safety distance. A minimum eye-safety distance can be defined when the

maximum permissible exposure (MPE, defined in ANSI Z136) is reached:

P
l2
mina

=
MPE(t1)

t1
, (3-8)

It is considered dangerous for eyes to be exposed at a distance shorter than lmin. Intuitively, the

shorter the minimal eye-safety distance is, the more eye-safe the device is. We expand MPE based

on definitions from ANSI Z136:

P
l2
mina

=
MPE(t1)

t1
=

Cλ t0.75
1 10−3 (J · cm−2)

t1
= ket−0.25

1 , (3-9)

where ke is a method-independent constant. Plug in Eq. 3-4 and rearrange,

lmin = kl ·P0.5R0.5
a R−0.125

t1 , (3-10)

where kl is a method-independent constant.

Comparing different sensors. From Eq. 3-7 and Eq. 3-10, it is clear that for a depth

sensing method, specifying one quantity among P, dmax and lmin will also determine the other

two. We thus focus on the following question: To reach the same maximum sensing distance

dmax, what is the power consumption P and eye-safety distance lmin of each method? This is a key

problem for consumer devices with limited power budget. Plug Eq. 3-7 into Eq. 3-10 and
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rearrange:

lmin = kld ·dmaxR0.375
t1 R−0.25

t2 , (3-11)

where kld is a method-independent constant.

Fig. 3-3 summarizes the results derived from Eq. 3-7 and Eq. 3-11 for different sensing

methods. Full-frame pattern method is the most eye-safe but consumes the most power.

Conversely, point scanning (synced) consumes the least power but is also the least eye-safe,

which highly limits its application in consumer devices (laser projectors). Line scanning (synced)

strikes the sweet middle ground, which extends the distance by a large margin while maintaining

eye safety. Finally, by concentrating to a small ROI, the proposed adaptive method consumes the

least power and achieves the best eye-safety.

To intuitively showcase this advantage, we assume N ∼ 100 to 500, which is consistent with

the spatial resolution of most concurrent 3D sensors. For high-resolution depth sensors with

N > 1000, the gain is even greater. At the same maximum sensing distance, adaptive sensing:

1. has the same eye-safety distance as full-frame sensors, while consuming N−1 (0.01 to

0.002)× lower power.

2. has N−0.125 (0.56 to 0.46)× shorter (better) eye-safety distance as line-scanning, while

consuming N−0.5 (0.1 to 0.04)× lower power.

It is important to mention that these calculations are based on the assumption that the

illuminated area for adaptive sensing is the same as line scanning: Ra = N. In practice, this area

may be larger depending on the scene and application. The adaptive projector (SLM) may also

have a limited light efficiency, which gives an effectively smaller Ra and thus lower SNR.

Nonetheless, at the same maximum distance, adaptive sensing still has a power benefit as long as

Ra >
√

N, and it always has a eye-safety benefit since lmin is independent of Ra. The theoretical

analysis forms the foundation for the proposed adaptive 3D sensing. We validate the analysis in a

real-world prototype in Sec. 3.4.

Disjoint ROIs. So far, we assume an ideal flexible projector which can project light to
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Table 3-1. Variations of adaptive sensing.
SNR P lmin

V1 cN kpd2
maxN−1 klddmax

V1-a cNK−1 kpd2
maxN−1K klddmaxK0.375

V1-b cNK−0.5 kpd2
maxN−1K0.5 klddmaxK0.125

arbitrarily-shaped, even disjoint ROIs simultaneously. In practice, certain hardware

implementations do not have this capability (an example is discussed in Sec. 3.3.2). To this end,

we propose a more flexible scanning strategy: During the camera exposure, the system scans K

disjoint ROIs sequentially (typically 2≤ K ≤ 5). This adaptive V1-a method consumes slightly

more power and has a slightly longer eye-safety distance (Tab. 3-1). Another option is to divide

the camera exposure into K shorter exposures, and the system scans a single ROI during each

exposure. This adaptive V1-b method performs comparably as V1, but requires a K times higher

camera frame rate.
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3.3 Implementation of Adaptive Illumination

Now that we have theoretically analyzed the benefit of the proposed adaptive illumination,

how can the proposed adaptive illumination be realized? Notice that this is not a trivial problem.

The hardware implementation must satisfy two criteria: (1) The system can redistribute the

optical power to a small ROI (guided by an attention map), and (2) This ROI can be projected to

different parts of the scene flexibly and in real-time (30Hz). A common LCD or DLP projector

satisfies (2) but does not satisfy (1). In this section, we propose two hardware configurations that

satisfy both conditions.

3.3.1 Implementation 1: Phase SLM

Fig. 3-4(a) shows our SLM-based implementation. Our holographic projection approach is

inspired by recent work on holographic near-eye 3D displays [76]. Specifically, a hologram to be

reproduced by the SLM is decomposed as a sum of sub-holograms, where each sub-hologram

diffracts light to a single object point in the scene. In [76], each sub-hologram is created using a

lens phase function:

f lens
n (X) = e j2π

√
(X−xn)2+(Y−yn)2+(Z−zn)2)/λ , (3-12)

where (X ,Y,Z) is the 3D position of each pixel in the sub-hologram, (xn,yn,zn) is the 3D position

of the n-th object point, and λ is the light wavelength. The full hologram is,

H(X) =
N

∑
n=1

f lens
n . (3-13)

This lens phase function mimics a lens that focuses light to the object point at the correct depth,

which works well for near-eye displays. One limitation of this lens phase function approach is

that light is only redistributed locally. This is because the SLM can only reproduce a smooth

hologram due to the Nyquist frequency determined by the finite pixel pitch. However, f lens varies

rapidly for off-center pixels (X ,Y far away from xn,yn), causing aliasing artifacts. Therefore,

sub-holograms of much smaller sizes must be used, which greatly limits the light efficiency.
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Phase SLM

Collimation lens Laser

Various patterns

2DMEMS
Laser
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field-of-view

Various patterns

P1 P2

P3 P4

P1 P2

P3 P4

(a) Phase SLM-based implementation (b) MEMS + DOE-based method

Figure 3-4. Hardware implementations ray diagrams [117].

To alleviate this limitation, we propose the use of mirror phase function:

f mirror
n (X) = e j(X ·xn+Y ·yn), H(X) =

N

∑
n=1

f mirror
n . (3-14)

The mirror phase function corresponds to a smooth phase map linear in terms of X ,Y , and can be

implemented on the SLM without aliasing. It allows us to use each sub-hologram as a mirror that

reflects light to the right direction. By taking the sum of sub-holograms that reflect to different

directions, desired projection patterns can be achieved.

Conversion to phase-only holograms. Notice that Eq. 3-14 creates a hologram with both

amplitudes and phases being spatially-variant, which cannot be implemented on a phase-only

SLM. Several approaches [52, 38] have been proposed to convert such a full hologram to a

phase-only hologram. Fortunately, our goal is not to project a high-quality image, and simple

amplitude discarding is sufficient to project unique texture to the scene:

Hphase = Arg[H]. (3-15)

Efficient implementation. The mirror phase function consists of simple arithmetic

operations on large matrices, which can be implemented efficiently on a GPU. We implement our

hologram generator in CUDA and render the resulting hologram phase from the framebuffer to

the SLM using OpenGL-CUDA interoperability. On a NVIDIA Jetson Nano, an embedded

system-on-module with a Tegra X1 Maxwell 256-core GPU and limited computing resources, we

are able to generate 1080p holograms with around 100 points or less at 30 fps. Our
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Figure 3-5. Hardware prototypes [117].

implementation and simulator can be found at

https://github.com/btilmon/holoCuhttps://github.com/btilmon/holoCu.

3.3.2 Implementation 2: MEMS + DOE

Our second implementation is to adjust the beam incident angle of a diffractive optical

element (DOE) with a MEMS mirror, as shown in Fig. 3-4(b). DOE offers a cheap,

energy-efficient solution for random dot projection in single-shot structured light (Kinect V1) or

active stereo (RealSense). While those systems use a DOE that covers the entire scene, we use a

small FOV (≈ 5◦) that only corresponds to a small ROI. By rotating the MEMS mirror, the

deflected laser beam hits the DOE at different angles, thus generating a dot pattern at different

ROIs of the scene.

Comparison with phase SLM. The MEMS + DOE implementation is less flexible than the

SLM implementation since the hologram shape is fixed (determined by the DOE phase pattern).

This is schematically shown in Fig. 3-4: While SLM can illuminate ROIs of various shapes

(P1-P3), MEMS + DOE can only create the same shape shifted across the scene. Moreover, while
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the SLM can redistribute the optical power over two disjoint ROIs during the same camera

exposure (P4), different ROIs are scanned and imaged sequentially by the MEMS mirror, which

slightly decreases the SNR (see Sec. 3.2.2 for detailed analysis). Nevertheless, the MEMS + DOE

approach benefits from low cost, simple optics and small form factor, which are important factors

for mobile and wearable devices.
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3.4 Experiments

Hardware prototypes. Fig. 3-5 shows both hardware prototypes of our proposed method.

We use two FLIR BFS-U3-16S2C-CS cameras equipped with 20mm lenses as a stereo pair. Our

SLM implementation uses a Holoeye GAEA LCoS (phase-only) SLM, which can display 4K

phase maps at 30 frames per second. Our MEMS + DOE implementation uses a 0.8mm diameter

bonded Mirrorcle MEMS Mirror. A random dot DOE with a small FOV is preferred. Here, we

used a Holoeye DE-R 339 DOE that produces a periodic 6x6 dot pattern with 5◦ FOV instead and

we tilt the DOE such that the pattern is still unique locally on the epipolar line.

3.4.1 Attention Map and Depth Estimation.

We adopt classical semi global block matching for depth estimation [30]. The attention map

is determined by randomly choosing pixels that do not have a valid depth value from the depth

map computed from passive images. In practice, the attention map can be conditioned by the

application such that illumination is only needed within the regions where AR objects are

inserted. Our goal is to present a general sensor that can fit into many different perception

systems and improve active depth sensing.

3.4.2 Comparison Between 3D Sensing Strategies.

We emulate full-frame and line-scanning strategies on our SLM implementation and

compare them with our adaptive sensing strategy. An example of each emulated sensor can be

Figure 3-6. Emulating 3D sensors on a phase only spatial light modulator [117].
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Figure 3-7. Comparison between 3D sensing strategies [117].

Figure 3-8. MEMS + DOE implementation [117].
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Figure 3-9. Outdoor 3D sensing with phase only spatial light modulator [117].

found in Fig. 3-6. For line scanning, we compute and project the hologram of the dot pattern

line-by-line. We capture the image for each line individually and stitch the corresponding camera

rows together into a single image.

Fig. 3-7 shows the results for three different scenes. All scenes are illuminated with the

same ambient lighting and laser power. Laser power, exposure time and illuminated area are

chosen to ensure fair comparison. Due to the dominating photon noise from the ambient light,

full-frame and line scanning methods have a low SNR. As a result, depth estimation fails in the

textureless regions. Since the proposed adaptive sensing technique concentrates light to the

textureless regions, it achieves much higher SNR and obtains higher-quality depth maps, which

validates our theoretical analysis.

3.4.3 Outdoor Depth Sensing Under Direct Sunlight.

Fig. 3-9 demonstrates our Phase SLM prototype working outdoors under 50 kilolux direct

sunlight. We can rely on passive stereo to compute depth for the majority of the scene and only

project light where necessary, such as the white textureless pot. We also show a distance test of

the Phase SLM prototype at 2 meters. We believe this distance could be increased with further

SLM optical engineering in future work.
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3.4.4 MEMS + DOE Implementation.

Fig. 3-8 demonstrates our MEMS + DOE prototype. The dot pattern is projected to a

textureless object which improves the disparity compared to passive stereo. When the system

moves to another location at t1, it analyzes the new captured images and directs the ROI to the

new position of the textureless object.
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3.5 Conclusion

Optical power vs computation power. Although we do not explicitly compare the optical

power savings from adaptive sensing with the additional computation power needed for

computing the attention map and projector control signal (phase map for SLM), we show that

such computations consist of basic arithmetic operations and can be implemented on embedded

systems like NVIDIA Jetson Nano, suggesting that our approach can be deployed on increasingly

available mobile GPUs. Our system will have even higher benefits for outdoor applications where

optical power dominates.

Learning-based attention map and depth estimation. In this work, we use simple,

low-complexity texture analysis and semi global matching for attention map and depth

estimation. It is possible to design neural networks to achieve better depth estimation, at the cost

of higher computation. Our focus in on validating the proposed adaptive sensing as a promising

novel sensing strategy, and we expect more practical algorithms to be developed in future work.

Other active depth sensing mechanisms. Although this paper only shows hardware

implementations for active stereo, the adaptive sensing strategy can be applied to other depth

sensing mechanisms such as single/multi-shot structured light, direct/indirect ToF, FMCW Lidar,

among others, which can be a promising future direction.
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CHAPTER 4
END-TO-END FOVEATED IMAGING

Deep depth estimation from a single view has been effective at demonstrating the rich

geometric cues available in an image [106, 99, 73, 107, 19]. Additionally, these results are

improved by using other cues, such as sparse LIDAR or stereo measurements [118, 136, 72, 10].

Our key idea is to notice that most previous monocular approaches assume a nearly equal

distribution of sensor pixels across the camera’s field-of-view (FOV). In contrast, animal eyes

distribute resolution unevenly using fast, mechanical motion, or saccades, that change where the

eye’s fovea views the scene with high acuity. In this paper, we present SaccadeCam, a new

algorithmic and hardware framework for visual attention control that automatically distributes

resolution onto a scene to improve monocular depth estimation.

Figure 4-1. Our method learns to foveate resolution end-to-end for depth sensing [116].

Why Leverage Attention for Depth Sensing? Many methods seek to replicate the

biological advantages of attention, such as computational efficiency. However, most efforts apply

attention within network training and testing, after images have been

captured [98, 122, 71, 132, 58]. Our framework complements existing attention-based learning,

since SaccadeCam leverages visual attention to distribute resolution during image capture, and

deep attention mechanisms can still be applied after the capture of a SaccadeCam image. Since
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SaccadeCam can leverage attention during image capture, it can extract novel efficiencies,

particularly for bandwidth of image data. The potential for bandwidth reduction is important —

Marr observed that to have foveal resolution everywhere “...would be wasteful, unnecessary and

in violation of our own experience as perceivers...” [78]. SaccadeCam extracts the biological

bandwidth advantages of attention, which impacts platforms that need perception within strict

budgetary constraints, such as small robots and long-range drones. We show SaccadeCam results

for distributing visual attention (using the proxy of image resolution) to improve depth

estimation. In summary, our contributions are:

1. We define a new problem of distributing image resolution under a fixed camera bandwidth

around the scene with the goal of succeeding at depth estimation (Sect. 4.2 and Table 4-2).

2. We design an end-to-end network that controls resolution distribution, showing that

SaccadeCam images outperform conventional distribution of resolution and can detect

important objects for robot navigation, such as poles, signs and distant vehicles (Sect. 4.3,

Table 4-3 and Fig. 4-3, Sect. 4.5 Fig. 4-4).

3. We validate our method on a real hardware prototype that images multiple fovea per frame.

We also present a generalized selection algorithm to extract discrete fovea from the

attention mask. (Sect. 4.5).

4.1 Related Work

Table 4-1. SaccadeCam framework vs. other alternatives.
Method (with few examples) Adaptive Test Input Depth Recovery Attention during image capture Self/Semi/Guided

Deep Attention Mechanisms [122, 128, 58] Yes Mono/Mono+X Yes No All
Compressive Imaging [29] No Mono/Mono+X Yes No All

Monocular Depth Estimation [106, 44] No Mono Yes No All
Monocular Guided Upsampling [20, 34] No Mono+X Yes No Semi/Guided

Adaptive Guided Upsampling [7, 10] Yes Mono+X Yes No Guided
End-to-end Optics [16] No Mono Yes No Guided
Learned Zoom [135] No Mono No No Guided
Adaptive Zoom [119] Yes Mono No No Self
SaccadeCam (Ours) Yes Mono Yes Yes Self

Saccades, attention and related ideas have been studied in robotics and active vision for

many years [2, 6, 32, 88, 24, 33, 12]. In addition, foveal designs to enable high-quality imaging
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are also common [89, 54, 83, 25]. Our SaccadeCam framework is different in three important

ways. First, we explore rich distribution of resolution with multiple fovea, which has never been

demonstrated before for depth estimation. Second, we apply end-to-end learning to find where to

place fovea in a scene to estimate monocular depth with non-uniform spatial resolution. Finally,

we demonstrate a working SaccadeCam with a microelectromechanical (MEMS) mirror that is

directly controlled by our trained networks. We now discuss specific groups of related work,

summarized in Table 4-1.

Attention in Deep Learning. Attention in deep learning typically involves learning the

parameters of transformations of internal weights, so that the network can differentiably focus on

specific regions. Recurrent attention networks, spatial transformer networks and Gaussian

attention networks all learn such transformations [67, 61, 41, 57]. [91] show how to optimally

select viewing tiles within a FOV for efficient video streaming in VR headsets. There are also

approaches that use reinforcement learning for attention when a differentiable attention model is

not available [125, 119, 120]. For example, in [119], the goal is to select from a small, fixed

number of high-resolution patches to obtain better classification accuracy. In contrast, in our

method, patches can be placed anywhere in the FOV, and SaccadeCam controls where patches are

placed for depth estimation. In this sense, we take the goals of deep attention mechanisms inside

the camera, changing how image resolution is distributed under a fixed camera bandwidth.

Monocular and Guided Depth Completion. Monocular depth methods have been very

successful [106, 99, 73, 107, 19]. A variety of improvements on these methods by applying a

“mono+X” strategy have been proposed [8, 20, 77, 75, 118, 102, 55] with an available benchmark

on the KITTI dataset [118]. Upsampling has been shown with sparse depth [121], single-photon

imagers [10] and flash lidar [42]. SaccadeCam can be seen a first step towards physical

instantiations of recent depth estimation methods that seek to self-improve imperfect

measurements [118, 136, 72, 10, 96]. In contrast to these other approaches, our method is a fully

passive approach that adaptively distributes resolution to enable successful monocular estimation,

see Table 4-1.
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Foveated Rendering in VR/AR. Foveation based on eye tracking is used to bypass

rendering entire resolution frames in VR/AR headsets [43, 62]. [62] proposed a GAN

reconstruction network that is able to take roughly 10% of an image as input and reconstruct a

plausible foveated video. Rather than generating compelling viewing, we are interested in

foveated imagery for depth estimation.

Compressive Sensing for Vision. Compressive signal processing uses coded optics during

capture for applications such as classification [124, 26, 29]. Compressive sensing optimizes

bandwidth at the cost of computing (such as L1-optimization), after image capture, to decode the

measurements. Our approach is about emphasizing scene areas with new measurements during

image capture, reducing bandwidth without extra computing.

Adaptive Imaging for Vision. End-to-end learning inside the camera has impacted many

applications in computational cameras and computer vision. These include learning optimal

structured light patterns [5], learning optimal lens parameters for monocular depth estimation [16]

and HDR imaging [80], and learning optimal sensor designs [14]. SaccadeCam is different in that

the optics are not fixed but foveate, enabling active, adaptive changes in imaging inside the

camera. This is also what separates us from previous work that does not use learning to decide

where to distribute resolution [115]. In this sense, our work is similar to adaptive LIDAR

work [97, 72, 10, 96], but instead we seek to control monocular resolution for depth sensing.

4.2 Can Adaptive Attention Improve Depth?

Our hypothesis is that distributing pixels within a camera field-of-view can positively

impact monocular depth estimation. This is only possible if models of differing bandwidths

perform similarly on smooth consistent regions and perform differently on critical regions. We

want to test this hypothesis and build learning mechanisms to distribute these pixels in a

self-supervised manner, with no requirement for ground truth labels as recent work has shown

[40]. Given a fixed bandwidth, the reduction of resolution in some areas frees up resolution to

place onto critical regions such as pedestrians, signs, cars and foliage. In the next section, we

discuss how to decide where to place the resolution and demonstrate the validity of our
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hypothesis. Now, we discuss the implications of our approach in Table 4-2.

4.2.1 Bandwidth

Table 4-2 has three baselines at different bandwidths. We define bandwidth as the number

of angular samples across the FOV, i.e. our notion of bandwidth is identical to angular resolution.

Therefore, while for practical reasons we may show images of the same spatial resolution (i.e.

pixels in computer memory), they are of very different angular resolution. For all our experiments

we use images with camera intrinsics from the KITTI dataset [35], from which we simulate

different camera resolutions.

We simulate bandwidth by downsampling based on the scaled intrinsic matrix and then

upsampling back to original resolution. This simulates a camera that, in practice, would have less

resolution bandwidth over the same field of view. The three baselines in Table 4-2 are full

resolution (70 px/mm bandwidth), target resolution (31.30 px/mm bandwidth) and three

low-resolution images that we term as wide-angle camera (WAC) bandwidth in the context of the

SaccadeCam hardware in Sect. 4.5.

4.2.2 Depth from SaccadeCam Images

In our experiments we use the ground truth color images as the full resolution. The high

resolution attention regions in our SaccadeCam images are also at the full resolution. We compare

equiangular sampling of the target resolution with SaccadeCam images that have to be at the

same bandwidth as the target resolution. SaccadeCam images are created by fusing high

resolution images into attention regions within the low-resolution WAC images. The WAC

resolution and the number of attention regions are constrained by the fact that their sum must

Figure 4-2. Self-supervised foveation network [116].

64



Table 4-2. Oracle motivation from the KITTI dataset [35].
Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

Full Resolution (70 pixels/mm) 0.109 0.883 4.960 0.208 0.865 0.949 0.975
Target resolution (31 pixels/mm) 0.118 0.988 5.188 0.214 0.851 0.944 0.974
Wide Angle Camera (27 pixels/mm) 0.119 0.991 5.238 0.216 0.846 0.943 0.974
Photometric Oracle 0.116 0.941 5.134 0.213 0.851 0.945 0.975

(a) True Oracle 0.114 0.853 4.850 0.208 0.857 0.950 0.976
Wide Angle Camera (22 pixels/mm) 0.121 1.005 5.275 0.219 0.840 0.939 0.973
Photometric Oracle 0.116 0.931 5.114 0.214 0.848 0.943 0.974

(b) True Oracle 0.111 0.850 4.846 0.206 0.863 0.950 0.976
Wide Angle Camera (15 pixels/mm) 0.128 1.067 5.507 0.228 0.824 0.934 0.971
Photometric Oracle 0.120 0.960 5.238 0.219 0.840 0.941 0.973

(c) True Oracle 0.112 0.847 4.848 0.206 0.866 0.951 0.976

equal the target angular resolution. While monocular images with equiangular resolutions have a

variety of methods for depth estimation, these cannot be used directly on SaccadeCam images

without training or fine tuning. This is because SaccadeCam images have spatially varying

resolution, and in Sect. 4.3 we discuss how to extract depth from such monocular imagery. Now

we discuss the implications of what is possible if such SaccadeCam depth estimation is solved.

4.2.3 Oracles

Our approach is to compare monocular depth estimation of equiangular images with

SaccadeCam images, created by unevenly distributed resolution. We design oracle experiments

that determine ideal locations to distribute resolution to, and then place focused depth predictions

as a perfect color-to-depth mapping in the attention regions.

For the Photometric Oracle in Table 4-2, the attention regions are computed based on the

top N locations of the difference between the WAC depth prediction errors from a fully trained

WAC network and full resolution depth prediction errors from a fully trained full resolution

network using the method of [40]. We then replace the WAC depth with focused depth in the

attention regions. N is the limit of available pixels left after the target resolution and WAC

resolutions are determined from our camera model. We hypothesize that the focused depth errors

should be lower than WAC depth errors in high resolution attention regions and similar to WAC

depth errors in smooth geometrically consistent regions.

For the True Oracle in Table 4-2, the attention regions are computed based on the top N
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locations of the difference between WAC depth and ground truth LIDAR, where N is scaled

according to the number of LIDAR samples versus full resolution for fair comparison. We then

replace the WAC depth with focused depth in the attention regions. Therefore, if the worst depth

estimates of WAC images are replaced by the corresponding depths in the same regions of full

resolution images, then, as can be seen by the Table 4-2, depth from SaccadeCam has the

potential to outperform state-of-the-art. Our oracle experiments support our idea that better

resolution can help with depth estimation as suggested in [78, 40].
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4.3 End-to-end Learning for Adaptive Attention

In Figure 4-2 we depict the complete flow for our self-supervised method. Our system

consists of one encoder (blue) and two decoders (red and green). Each of these are designed for

self-supervised stereo, following the method of [40]. Our method could easily be integrated with

self-supervised monocular training as well, since the pose can be estimated from multiple views

of a single camera using a pose network. At test time the flow in Fig. 4-2 is monocular (single

image), but at training time, each network takes a stereo pair.

Figure 4-3. Overview of our KITTI results [116].

Adaptive Attention. The attention decoder (green in Figure 4-2) is trained with a stereo

pair of low-resolution, wide angle camera (WAC) images. The attention decoder input is the

latent vector of the training depth encoder. The attention decoder then predicts per pixel attention

and calculates binary cross entropy loss against the “true” binary attention mask given by the top

photometric error regions calculated from the training depth network. This trains the attention
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mask towards 1. Our insight is that these error regions should be where additional resolution

might make a difference. However, we are not strictly tied to the photometric error, as we will

soon see. We then differentiably render a SaccadeCam image using the predicted attention mask,

focused image, and WAC image. Here the bandwidth is given by the maximum number of

samples that are possible at the highest resolution of the system. The bandwidth is a function of

the target resolution and the amount of bandwidth that has already been used up by the WAC

image.

SaccadeCam Rendering. Our SaccadeCam rendering module consists of alpha blending a

focused image onto the WAC image using an attention mask as the blend weight. We use this to

create SaccadeCam images from either a learned or oracle attention mask M. This allows us to

differentiably train our attention network end to end with a downstream monocular network,

ISaccadeCam = M⊙ (I f ocused)+(1−M)⊙ (IWAC). (4-1)

Depth Network and Attention Regularization. The last module is the encoder-decoder

pair (blue and red) that converts the SaccadeCam image into a depth. When calculating the view

synthesis photometric loss [40], we compute the loss between the target SaccadeCam image and

the synthesized target image that is also foveated with the same attention mask, but with the

synthesized focused target image in the attention regions. The encoder and decoder used in

SaccadeCam depth estimation are the same used in obtaining the WAC depth during attention

estimates. During attention estimation, the gradients of the depth encoder and decoder pair are

frozen. In other words, the encoder and decoder drifts towards monocular SaccadeCam image

depth reconstruction, while also regularizing attention estimates. Practically, such a system is

more efficient since it shares SaccadeCam features with the attention module and allows for

flexible attention beyond WAC photometric errors.

Loss Terms. Our final loss is L = µLp +λLs +αLa. Lp and Ls follow the view synthesis

photometric loss and depth smoothness loss common in monocular depth estimation. We set
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Table 4-3. SaccadeCam compared against equiangular (conventional) images.
Fovea weighting Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

Full Resolution (70 pixels/mm) No 0.109 0.883 4.960 0.208 0.865 0.949 0.975
Target Resolution (35 pixels/mm) No 0.117 1.001 5.144 0.213 0.855 0.946 0.974
Wide Angle Camera (30 pixels/mm) No 0.119 1.026 5.202 0.216 0.850 0.943 0.974
Ours no weighting No 0.115 0.942 5.087 0.209 0.853 0.948 0.976
Ours fovea weighting Yes 0.116 0.950 5.038 0.206 0.852 0.948 0.977
Color edges no weighting No 0.122 0.974 5.278 0.220 0.836 0.940 0.973

(a) Color edges fovea weighting Yes 0.123 0.958 5.267 0.220 0.831 0.940 0.974
Target Resolution (27 pixels/mm) No 0.118 1.013 5.209 0.215 0.848 0.943 0.974
Wide Angle Camera (23 pixels/mm) No 0.121 0.996 5.264 0.219 0.839 0.940 0.973
Ours no weighting No 0.121 1.003 5.192 0.211 0.844 0.945 0.976
Ours fovea weighting Yes 0.119 0.938 5.161 0.211 0.842 0.944 0.976
Color edges no weighting No 0.137 1.124 5.721 0.247 0.797 0.920 0.964

(b) Color edges fovea weighting Yes 0.134 1.056 5.660 0.240 0.801 0.924 0.967
Target Resolution (8 pixels/mm) No 0.194 2.705 7.378 0.296 0.730 0.889 0.949
Wide Angle Camera (7 pixels/mm) No 0.234 4.144 8.317 0.330 0.686 0.867 0.937
Ours no weighting No 0.167 1.516 6.815 0.270 0.743 0.900 0.958
Ours fovea weighting Yes 0.164 1.463 6.555 0.256 0.754 0.909 0.964
Color edges no weighting No 0.167 1.514 6.836 0.273 0.741 0.898 0.957

(c) Color edges fovea weighting Yes 0.167 1.472 6.589 0.260 0.747 0.907 0.963

µ = 1 to avoid masking out fovea regions and λ = 0.001. La is the binary cross entropy loss

between the predicted attention and WAC photometric error given by the SaccadeCam depth

network. We freeze our depth network and set µ = λ = 0, α = 1 when training the attention

network. We found that the attention decoder learned much quicker than the depth network

(roughly 5 epochs for attention compared to roughly 20 epochs for high bandwidth depth). We

also found that an attention network trained on a single bandwidth generalizes well across

different bandwidths. In an online setting, we hypothesize that infrequently updating or

significantly lowering the learning rate of the attention network relative to the depth network

would be beneficial.

4.4 Experiments

We implement our network in PyTorch on a single NVIDIA GTX 1080 Ti. Our encoder

architecture is a ResNet18 and our decoder architecture is similar to [40]. All our training was

initialized with ImageNet parameters. In Table 4-3, we show our results over a few different

bandwidths. We found our SaccadeCam depth networks finished training earlier than networks

trained on equiangular images based on the validation error. We train the depth networks of (a),

(b), (c) for 17, 11, 2 epochs respectively and the attention networks of (a), (b), (c) for 5 epochs

each. We train all equiangular resolution models for 20 epochs. Note that not all bandwidths are
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appropriate for SaccadeCam. For example, extremely high-resolution images may not benefit

from bandwidth optimization, and very low resolution images may result in extreme WAC depth

errors.

We also explored weighting our loss with a weighted binary version of the predicted

attention mask based on the observation that high resolution models train longer than low

resolution models, this supports giving the high resolution attention region more weighting during

training since the periphery is lower resolution. We train the weighted variants of (a), (b), (c) for

7, 14, 1 epochs respectively. Overall the region weighting boosts performance and speeds up

training. We found at higher bandwidth SaccadeCam data the region weighting delta must be

smaller because, while the periphery is lower resolution than the high resolution attention region,

it is still high enough resolution that it needs a stronger weighting to train. We weight the

foveal/WAC regions of the photometric error 1.15/0.85, 1.25/0.75, 1.5/0.5 for (a), (b), and (c)

respectively in Table 4-3.

We compare our results to monocular self-supervised depth reconstruction at the target

resolution. We also compare to a color edge detector as an attention proxy. We found that edges

performed well at very low resolutions, but performed poorly at higher resolutions where the

fovea must be more intelligently placed to meaningfully impact performance. For our

SaccadeCam networks, we first train our depth networks using the WAC photometric error as an

attention proxy. We then train the attention network with the same frozen depth network using the

WAC photometric error as psuedo ground truth as described in Section 4.3. At test time, we use

the learned attention mask. We found ≥ 95% overlap between the predicted attention masks and

error regions on average for the test set across bandwidths, which shows the attention masks

sufficiently learned to represent the error regions.

Fig. 4-3 shows visual results from our SaccadeCam models. Our hypothesis holds true in

that we perform similar to equiangular models on smooth and geometrically consistent scene

regions while outperforming equiangular models on irregular edge-case regions. Notice the

SaccadeCam framework allows us to detect road signs, poles, and other distant objects such as
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cars that the equiangular models cannot detect.
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4.5 SaccadeCam Hardware Prototype

Here we discuss a physical instantiation of SaccadeCam that can adaptively distribute

resolution onto regions of interest based on our trained models. SaccadeCam consists of a

low-resolution wide angle camera (WAC) whose field-of-view (FOV) covers the scene, and a

narrow FOV telephoto camera that views reflections off a small, fast moving

microelectromechanical (MEMS) mirror. These components are collectively the SaccadeCam

device seen in Fig. 4-1.

Unlike many other MEMS mirror enabled devices (such as LIDARs [31, 108, 69]), we do

not run our MEMS mirror at resonance. Instead we use a specific scan pattern, and we are able to

control 5 points (i.e. 5 fovea) in the FOV at 5 Hz. This speed is reasonably fast for most objects in

common scenes for depth inference. Our telephoto and WAC cameras consist of a 1.6 MP FLIR

Blackfly S-U3-16S2C-CS, where the telephoto camera has a 30mm lens and the WAC camera has

a 6mm lens. The telephoto camera views reflections off a 3.6mm Mirrorcle Technologies MEMS

mirror with custom modifications to prevent ghosting artifacts induced from MEMS electronic

packaging. Our main computer is a NVIDIA Jetson NANO, a popular embedded board with GPU

and CUDA capabilities. We trace our PyTorch models to TorchScript so we can run our models

on-device in C++. The Jetson NANO communicates with custom synchronization circuitry

containing a Teensy 4.0 microcontroller that triggers the cameras and MEMS mirror in lockstep.

The MEMS mirror is physically controlled from the Teensy through a Mirrorcle Technologies

PicoAmp 5.4 X200 Digital to Analog Converter. Our hardware prototype is capable of on-device

training although we leave this for future work.

4.5.1 Feasible Fovea from the Attention Mask

In Sect. 4.3 we discussed how to process the input, low-resolution WAC image to produce

an attention mask across the WAC FOV, with the goal of increasing resolution in this region up to

the bandwidth limit. Such an attention mask is deformable and non-convex, in the sense that there

are no restrictions on optical feasibility of sensing the attention region in higher resolution,

quickly.
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In this section we discuss how to extract a discrete number of optically feasible saccades

from the attention mask for a practical MEMS-mirror-based SaccadeCam. We also contend that it

will apply to any camera that is not capable of producing programmable spatially varying

deformable point spread functions (PSFs). While phase masks [133] can achieve these types of

deformable attention masks, they are both slow and work best with coherent light, rather than

incoherent light from a scene.

Our goal is to maximize attention mask coverage with n saccades, or mirror viewpoints.

These correspond to n pairs of voltages that specify the MEMS mirror viewpoints,

{(θ(V (t1)),φ(V (t1))), ...(θ(V (tn)),φ(V (tn)))}. We first tackle the problem of fixed foveal size or

fovea FOV, and then we generalize such that each viewing direction i could have its own unique

FOV (perhaps using a liquid lens [137]).

Greedy Attention Algorithm. The greedy algorithm requires an attention mask and a fixed

angular fovea size ω f ovea. Given an attention mask defined on the FOV, A(ω) where ω ∈ ω f ov,

we can find the location of the maximum attention value, ωmax in this mask. We then follow an

iterative procedure, where we capture a fovea by selecting t1 such that the first mirror direction

(θ(V (t1)),φ(V (t1))) points along the central axis of the solid angle defined by ωmax. We then

destroy attention mask information around the first maximum such that A(ω) = 0, where

ω ∈ ω f ov and ∥ωmax−ω∥ ≤ ω f ovea. We then repeat the procedure n times for n fovea, until a set

of mirror voltages are obtained {(θ(V (t1)),φ(V (t1))), ...(θ(V (tn)),φ(V (tn)))}. The proof of this

method follows from the greedy selection of subsequently maximum attention values, all of

which are monotonically decreasing (i.e. ωmax for t1 is less than ωmax at t2 and so on). Therefore,

there is no way that there exists an attention value at location ωmissed that is greater than the n

selected values at different locations of ωmax, because otherwise it would have been selected for

measurement at some point between t1 and tn. We present derivations for an advanced attention

coverage algorithm based on the optical knapsack algorithm from [94] in the supplementary,

although we do not implement this algorithm in hardware.
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4.5.2 Hardware Prototype Results

We show qualitative results on real data captured with our SaccadeCam hardware prototype

in Fig. 4-4. Our results are obtained on-device at video rate as follows. The NVIDIA Jetson

NANO triggers the WAC camera and passes the WAC image through our trained attention

network. Next, given a calibrated MEMS mirror, telephoto and WAC cameras, we determine the

top ten pixel locations (and therefore MEMS voltages) that optimally cover the attention

prediction with our greedy algorithm. The mirror is triggered and moves to a location whereby the

telephoto camera is subsequently triggered to capture an image of the MEMS mirror reflection.

We choose ten fovea for our hardware prototype so the previous step is repeated until ten MEMS

mirror images are captured; the Hardware Attention column in Fig. 4-4 shows examples of the ten

captured MEMS mirror images taken by the telephoto camera. We then gamma correct and blend

the telephoto camera images onto the WAC image to form the SaccadeCam image. Finally, the

SaccadeCam image is passed through our depth network to obtain our result.

Figure 4-4. Results for real data captured with our SaccadeCam hardware prototype [116].

For results with our SaccadeCam hardware prototype, we keep the target resolution

bandwidth at 35 px/mm and SaccadeCam WAC bandwidth at 31 px/mm with ten fovea. This lets

us use models trained on the much larger KITTI dataset. For target depth we use the 20 epoch

weights of 35 px/mm target bandwidth. We finetune SaccadeCam weights for 5 epochs at 1e-7

learning rate on KITTI with patch fovea to smooth out rough square boundary edges occurring
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when overlaying fovea images onto the WAC image since the fovea images are square and do not

perfectly approximate the learned attention.

Fig. 4-4 shows that our hardware prototype can qualitatively match the results seen on the

KITTI test set in Fig. 4-3 in that SaccadeCam depth outperforms target depth in the learned

attention regions thanks to the natively-high angular resolution of the telephoto camera viewing

the MEMS mirror.
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4.6 Conclusion

We introduced a new framework, SaccadeCam, for leveraging visual attention during image

formation. Our key idea is to adaptively distribute resolution onto the scene, to improve depth

sensing, demonstrating that our framework can perform better than equiangular distribution of

pixels. We now discuss some limitations that we would like to improve in future work:

Real-time demonstrations. Our current hardware prototype allows for on-device

end-to-end learning at nearly 5 Hz. We want to demonstrate dynamic scenes results soon with

faster hardware.

Deformable attention masks. Our setup and theory already allow deformable attention

masks, and we wish to use a liquid lens to demonstrate this.

Beyond depth estimation. The differentiable and modular nature of the SaccadeCam

framework encourages integrating SaccadeCam into other existing vision applications such as

semantic segmentation or pedestrian detection.

76



CHAPTER 5
SUMMARY AND CONCLUSIONS

Throughout this dissertation, the idea of optimizing visual sensing through principles

derived from biological foveation has been rigorously explored. Each chapter provided insights

and advancements in unique aspects of this overarching theme. Here’s a summary and

forward-looking synthesis of the topics discussed:

Our passive foveated imaging system, FoveaCam, revealed the inherent advantages of

quickly modulating a pixel-dense camera viewpoint [115, 114]. This has direct implications for

fields such as robotics, augmented reality, and autonomous vehicles, especially in tasks like 3D

reconstruction, long-range navigation, and enhancing safety in critical regions. However, as

noted, there are still areas like integrating an auto-focusing element and reducing the camera’s

size that would further its practical applications. It’s also essential to compare the camera’s

performance with other competing sensors and datasets, which would be a significant next step in

solidifying its position in the realm of advanced imaging.

Next, the work presented on active foveated imaging improved energy-efficient adaptive 3D

sensing [117]. While our approach provides a promising blueprint for energy-efficient adaptive

sensing, especially valuable for outdoor 3D sensing applications, the balance and comparison

between optical and computational resources require further exploration. The introduction of

neural networks for depth estimation and the potential application of adaptive sensing across

different depth sensing mechanisms, such as ToF or FMCW Lidar, hints at a vast and rich field of

future study.

Finally, the end-to-end foveated imaging system, SaccadeCam, offers an exciting paradigm

shift in how we approach visual attention during image formation [116]. The preliminary results

show that adaptively distributing resolution can improve depth sensing beyond traditional

methods. However, pushing its limits in real-time scenarios, using deformable attention masks,

and integrating its capabilities into other vision tasks, such as semantic segmentation or detection,

represents the future direction of this work.

In conclusion, the adaptive, foveation-inspired imaging systems explored in this dissertation
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hold the promise of revolutionizing many fields where visual sensing plays a pivotal role. They

offer a blend of the tried-and-tested principles from nature and cutting-edge technology. While

we have made substantial strides in understanding and building these systems, the journey ahead

promises further advancements and applications, ensuring that the next wave of imaging systems

will be more intelligent, adaptive, and efficient.
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